
Università degli Studi di Milano

Dipartimento di Informatica e Comunicazione

Rapporto interno N. 22-07

'

&

$

%

Privacy Protection through Anonymity
in Location-based Services

Sergio Mascetti

II

Contents

1 Introduction 1

1.1 Problem description . 1

1.2 Contribution . 4

1.3 Outline . 5

2 A model of privacy in LBS 7

2.1 Identification of privacy threats 7

2.1.1 The static case . 8

2.1.2 The dynamic case . 10

2.1.3 The reference scenario 11

2.2 Formal framework . 13

2.2.1 Privacy protection through anonymity 13

2.2.2 Formal definition of requests 14

2.2.3 Formal definition of generalization functions 16

2.2.4 Formal definition of attacks 17

2.2.5 Formal definition of defenses 19

2.2.6 Algorithms to compute the generalization function . . 20

2.2.7 Extension of the framework for the dynamic case . . . 20

3 Anonymity in the static case 23

3.1 Context Cst: a model for spatio-temporal anonymity 23

3.1.1 Context definition . 23

3.1.2 Defense algorithms against AttCst proposed in the lit-

erature . 25

III

3.2 Context Cst+g: a model for spatio-temporal anonymity when

the generalization function is known to the attacker 27

3.2.1 Context definition . 27

3.2.2 A class of defense algorithms 30

3.2.3 A defense algorithm proposed in the literature 32

3.2.4 DichotomicPoints defense algorithm 33

3.2.5 Grid defense algorithm 36

3.3 Context Cast+g: modeling approximate knowledge of users’

location . 39

3.3.1 Context definition . 40

3.3.2 PartitionArea generalization algorithm 42

3.3.3 Specification of the pul function from publicly avail-

able information . 44

3.4 Empirical Evaluation of Generalization Algorithms 46

3.4.1 Experimental setting 46

3.4.2 Evaluation of the quality of service 47

3.4.3 Performance evaluation 51

4 Anonymity in the dynamic case 53

4.1 Requests’s linking . 53

4.2 Context Cst+pid: a model for spatio-temporal anonymity with

linking . 55

4.2.1 Context definition . 55

4.2.2 Greedy-nnASR Generalization algorithm 56

4.2.3 Square Generalization algorithm 58

4.3 Context Cst+g+pid: a model for spatio-temporal anonymity

with linking when the generalization function is known to the

attacker . 61

4.3.1 Context definition . 61

4.3.2 Provident-hilb generalization algorithm 62

4.4 Context Cast+g+pid: modeling approximate knowledge of users’

locations with linking . 64

IV

4.4.1 Context definition . 64

4.4.2 A defense function . 67

4.4.3 Specification of the pul function in the dynamic case . 69

4.5 Empirical evaluation of generalization algorithms 69

4.5.1 Experimental setting 70

4.5.2 Evaluation of the trace length 70

5 Discussion 73

5.1 Personalization of the re-identification threshold 73

5.2 Shape of the generalized area 74

5.3 User friendly specification of temporal granularities 75

6 Related work 79

6.1 Anonymity in databases . 79

6.2 Spatio temporal anonymity 80

6.3 Enforcing location privacy . 83

6.4 Identification and prevention of critical request traces 84

6.5 Techniques based on access control 85

7 Conclusions and future work 87

7.1 Summary of the contributions 87

7.2 Future work . 88

A Proofs 91

A.1 Proof of Theorem 1 . 91

A.2 Proof of Theorem 2 . 91

A.3 Proof of Theorem 3 . 92

A.4 Proof of Theorem 4 . 94

A.5 Proof of Theorem 5 . 94

A.6 Proof of Theorem 6 . 95

A.7 Proof of Theorem 7 . 96

A.8 Proof of Theorem 8 . 97

A.9 Proof of Theorem 9 . 98

V

B Notation 101

VI

Chapter 1

Introduction

1.1 Problem description

Location-based services (LBS) refer to those information services that deliver

differentiated information based on the location from where a user issues the

request. This kind of services has recently attracted much interest from both

industry and research. Currently, the most popular commercial service is

probably car navigation, but many other services are being offered and more

are being experimented, as less expensive location aware devices are reaching

the market.

Consciously or unconsciously, many users are ready to give up one more

piece of their private information in order to access the new services. Many

other users, however, are concerned with the privacy problem that could

arise. Indeed, in LBSs the user location information necessarily appear in a

request sent to the service providers. A privacy problem arises when the user

is concerned with the possibility that an attacker may connect the user’s

identity with the information contained in the service requests, including

location and other information. In general, the association between the real

identity of the user issuing an LBS request and the request itself as it reaches

the service provider can be considered a privacy threat.

An obvious defense against privacy threats is to eliminate from the re-

1

quest any data that can directly reveal the issuer’s identity, possibly using

a pseudonym whenever this is required (e.g., for billing through a third

party). Unfortunately, simply dropping the issuer’s personal identification

data may not be sufficient to anonymize the request. For example, the lo-

cation and time information in the request may be used, with the help of

external knowledge, to restrict the possible user to a small group of issuers.

A similar problem is well-known for the release of data in databases tables

[44]. In this case, the problem is to protect the association between the

identity of an individual and a tuple containing her sensitive data.

A possible solution consists in decreasing the precision of the location

information sent to the service provider. In practice, the issuer of the re-

quest does not communicate her exact location but, instead, she provides a

generalized area that includes the location where she is actually located.

Example 1 Alice submits an LBS request from her device asking for a

nearby vegetarian restaurant. She would rather prefer not to reveal that

she is a vegetarian. For this purpose her credentials in the request to the

service provider are substituted with a pseudo-ID and the network address

of her device is also appropriately masked.

Suppose the anonymized request is obtained by an attacker. If this at-

tacker happens to know that Alice was the only person to be present at the

location and time indicated in the request (possibly through sighting, cameras,

presence data in company buildings or the alike), the request is associated to

her identity and Alice’s private information is disclosed.

In order to prevent this privacy violation, Alice avoids sending her exact

location and, instead, she provides the service provider with a generalized

area that includes her location and the location of other k − 1 users. The

service provider replies to this generalized request with the set of vegetarian

restaurants that are the closest one to any point of the generalized area.

If the generalized area is sufficiently small, the service result will probably

consist of a small set of restaurants among which there is the one that would

have been returned if the exact location were provided. The advantage of

2

using the generalized area is that, since it contains at least k users, even if

the attacker can obtain Alice’s request and even if he knows the location and

the identity of each of the k users, he is not able to identify the issuer with

probability greater than 1/k and therefore he is not able to understand that

Alice is vegetarian (with probability greater than 1/k).

The generalization technique used in Example 1 implicitly assumes that

the information about the spatio-temporal position of a sufficient number of

potential users of the service is available to the entity performing the gen-

eralization. The typical scenario assumes the existence of a Location-aware

Trusted Server (LTS) that can gather this information; the LTS receives

the LBS requests from the users, it performs the appropriate generalization

(also hiding explicitly identifying values), and it forwards the generalized re-

quest to the target service provider. The answer from the SP is also routed

through the LTS to be redirected to the specific user with a refined result

when possible [29].

In the above scenario, the generalization algorithm employed by the

LTS has three goals: (i) to guarantee the user’s privacy by insuring that a

sufficiently large number of potential users are not distinguishable from the

issuer, (ii) to preserve the quality of service by minimizing the size of the

generalized area, and (iii) to be efficient, since it must be computed on-line.

To illustrate the above three goals, consider a yellow pages LBS. If a

user’s request is not generalized, the SP will be able to provide a very accu-

rate service pointing to the closest relevant resource considering the exact

position of the user; However, by revealing that information, the user’s pri-

vacy may be compromised. On the other hand, if the user’s position is

generalized to a very large area, many more resources would be selected as

potentially relevant to the user; This could lead to a waste of computation

time and bandwidth, as well as to the possible delivery of useless information

to the user.

3

1.2 Contribution

Most of the generalization algorithms proposed in previous works are not

formally proved to be correct (see Section 6 for related work). This is due

to the lack of a formal framework to define when a generalized request is

safe. In this dissertation we provide a unifying framework that makes

it possible to define the safety of a request and, consequently, to prove the

correctness of a generalization algorithm. The framework clarifies the role of

the external knowledge available to the attacker as well as of his reasoning

abilities. Indeed, we note that the fact that certain generalization algorithms

previously proposed in the literature are considered “unsafe” is simply due

to different assumptions on the attacker’s knowledge and reasoning abilities.

We call “context” a set of these assumptions. The formalization we provide

makes it possible to formally prove the safety of generalization algorithms

under different contexts.

Based on the formal framework, we propose a new methodology to

design safe generalization algorithms. The overall idea is that the context

should first be defined, then it is possible to specify the attack that can

be performed in that context and hence to state when a request is safe or

not. Finally, a generalization algorithm should be defined to compute only

requests that are safe in the chosen context.

In this dissertation we also classify existing generalization algo-

rithms with respect to the context in which each of them is safe and we

propose new generalization algorithms in contexts considered in pre-

vious works as well as in new contexts. We implemented most of the algo-

rithms proposed in the literature as well as the new algorithms in order to

perform an extensive experimental study on the performance of the

algorithms in terms of computation time and size of the generalized area.

Results from this dissertation appear in the following publications: [7, 8,

37, 6]. Whilst much of this thesis is joint work with my supervisors, I made

significant contributions to Chapter 2, in particular in the definition of the

formal framework, and in Chapters 3 and 4, in particular in the specification

4

of the attacks and in the design of the generalization algorithms.

1.3 Outline

In Chapter 2 we discuss the privacy threads in LBS and we present the

formal framework that will be used throughout this dissertation. In Chap-

ter 3 we model the two contexts that were implicitly considered in most of

previous works and a new context that, to the best of our knowledge, had

never been considered in previous works. In each context, the attacks are

specified, the existing generalization algorithms are analyzed and new ones

are proposed. We conclude the chapter showing the results of our exper-

imental results. The three contexes considered in Chapter 3 are extended

in Chapter 4 where we specify new attacks, we present the corresponding

generalization algorithms and show the results of our experimental results.

A discussion is presented in Chapter 5 while related work are reported in

Chapter 6. In Chapter 7 we conclude the dissertation discussing the open

problems and summarizing the contributions of this work.

5

6

Chapter 2

A model of privacy in

location based services

2.1 Identification of privacy threats

In general, there is a privacy threat when an attacker is able to associate

the identity of a user to information that the user considers private. In the

case of LBS, this sensitive association can be possibly derived from requests

issued to service providers. More precisely, the identity and the private

information of a single user can be derived from requests issued by a group

of users. Figure 2.1 shows a graphical representation of this general view of

privacy threats in LBS.

In order to infer the sensitive association, the attacker can exploit some

external knowledge that is not transmitted with the requests. This informa-

tion can be used, for example, to discover the identity of the issuer even if

this information is not explicitly provided in the request or to derive private

information associated with a particular location.

The assumption about the external knowledge that is available to the

attacker strongly affects the defense techniques used to protect user’s pri-

vacy. More generally, a privacy preserving technique can be provided once

a context is fixed that includes the assumptions about the external knowl-

7

edge that is possibly available to the attacker and the assumptions about

his reasoning abilities.

requests

issues

requests

issues

requests

issues

attacker can infer

private
information

user
identity

has
has

sensitive
association

external
knowledge

Figure 2.1: General privacy threat in LBS

2.1.1 The static case

Most of the approaches presented so far in the literature [24, 39, 29, 23, 8, 37]

have proposed techniques to ensure a user’s privacy in the case in which the

attacker can acquire a single request issued by that user. More specifically,

these approaches assume that:

• the attacker is not able to link a set of requests i.e., to understand

that the requests have been issued by the same (anonymous) user;

• the attacker is not able to derive private information about the issuer

of a request from the requests issued by other users.

In general, we can distinguish privacy threats according to two orthogo-

nal dimensions: a) threats in static versus dynamic cases, b) threats involv-

ing requests from a single user (single-issuer case) versus threats involving

requests from different users (multiple-issuer case).

Figure 2.2 shows a graphical representation of the privacy threat in the

static, single-issuer case. In this case, in order to prevent the disclosure

8

of the sensible association, it is sufficient to prevent the attacker from in-

ferring either user’s identity or user’s sensitive information. The ongoing

research in this field is tackling these two subproblems: prevent the attacker

from inferring the user’s identity and prevent the attacker from inferring the

user’s private information. Despite the solution of one of the two subprob-

lems is sufficient to guarantee user’s privacy, we argue that the solution of

both subproblems could enhance better techniques for privacy protection.

Indeed, the obfuscation of requests parameters usually involved in privacy

protection techniques implies a degradation of the quality of service. A lo-

cation based privacy preserving system that implements solutions for both

the subproblems can combine them in order to optimize quality of service

while preserving privacy.

requestissues

attacker
can infer

user
identity

attacker
can infer

has
has

private
information

sensitive
association

external
knowledge

Figure 2.2: The static, single-issuer case

Example 2 shows that, in the multiple-issuer case, an attacker can infer

the sensitive association for a user even if the identity of that user is not

revealed to the attacker.

Example 2 Suppose a user u issues a request that is generalized into r′.

Assume that, considering r′, an attacker can only understand that the issuer

of r′ is one of the users in the set S of potential issuers. However, if all

of the users in S issue requests from which the attacker can infer the same

sensitive information inferred from r′, then the attacker can associate that

sensitive information to u.

9

In the area of privacy in databases, this kind of attack is known as

homogeneity attack [35]. The problem in the area of LBS is depicted in

Figure 2.3. Note that, differently from the general case (Figure 2.1), in the

static, multiple-issuer case, a single request for each user is considered.

request

issues

request

issues

request

issues

attacker can infer

private
information

user
identity

has
has

sensitive
association

external
knowledge

Figure 2.3: The static, multiple-issuer case

2.1.2 The dynamic case

In contrast with the static case, in the dynamic case it is assumed that the

attacker is able to recognize that a set of requests has been issued by the

same user. Researchers [5, 27, 13] have considered such a possibility. We call

this linking. Several techniques exist to link different requests to the same

user, with the most trivial ones being the observation of the same pseudo-id

in the requests. We call request trace a set of requests that the attacker can

correctly associate to a single user.

Figure 2.4 shows a graphical representation of the dynamic case. The

corresponding techniques to preserve privacy are facing two problems. First,

preventing the attacker from linking the requests (called linking problem);

Indeed, the longer is a trace, the higher the probability of the issuer to

loose her privacy. Second, preventing the attacker from understanding the

sensitive association from a request trace.

10

request

issues

attacker
can infer

user
identity

attacker
can infer

has
has

request

link

request

link

request
trace

issues

issues

private
information

sensitive
association

time

external
knowledge

Figure 2.4: The dynamic case

2.1.3 The reference scenario

Figure 2.5 shows our reference scenario that involves three entities:

• The User invokes or subscribes to location-based remote services that

are going to be provided to her mobile device.

• The Location-aware Trusted Server (LTS) stores precise location

data of all its users, using data directly provided by users’ devices

and/or acquired from the infrastructure. It also has the ability to

efficiently perform spatio-temporal queries to determine, for example,

which or how many users are in a certain region.

• The Service Provider (SP) fulfills user requests and communicates

with the user through the LTS. Both pull and push communication

service models are possible; We concentrate on the former but the

framework we present can be easily extended to deal with the latter

too.

In our model each request is processed by the LTS into a request with the

same logical components but appropriately generalized. Under the condition

that user’s privacy is guaranteed, this generalization should be as little as

11

possible to ensure the best service quality for the user. Requests, once

forwarded by the LTS, may be acquired by potential attackers in different

ways: they may be stolen from SP storage, voluntarily published by the

trusted parties, or may be acquired by eavesdropping on the communication

lines. On the contrary, the communication between the user and the LTS

is considered as trusted, and the data stored at the LTS is not considered

accessible by the attacker.

Most of the approaches proposed in the literature [22, 24, 29, 39, 8, 37] to

protect LBS privacy consider scenarios that can be easily mapped to the one

depicted in Figure 2.5. Actually, scenarios where no location-aware inter-

mediate entity is present have also been considered. For example, in [30] a

direct communication between the user and the service provider is assumed,

and the defense function is computed on the client system. However, in

this model it is not possible to assume that the client has any awareness of

the exact location of other clients; hence the generalization techniques pro-

posed in this and in other papers would not be applicable. On the contrary,

Ghinita et al. propose a peer to peer architecture in which no centralized

entity is required [23]. In this case, the exact location information, required

to compute the generalized request, is shared by each user with other users

in the network. The problem with this approach is that, in general, the

other peers of the network are not trusted and hence providing them with

the exact location information may compromise user’s privacy.

We believe that the current business models of mobile operators naturally

support the existence and functionality of an entity like the LTS. Indeed,

mobile users implicitly trust the operator infrastructure even if they know

that very accurate information about their location and service requests is

stored. Moreover, in most countries each operator has a very large number

of customers, and hence a collection of data that may be more than sufficient

to implement some of the defense techniques we are proposing.

12

Figure 2.5: A general reference scenario

2.2 Definition of a formal framework for privacy

preservation

2.2.1 Privacy protection through anonymity

As depicted in Figure 2.1, a privacy threat occurs when an attacker is able

to obtain a user’s sensitive association. When a LBS requires each request

to contain explicit full identification of the user, the sensitive association can

only be protected by avoiding the explicit and implicit release of the second

component of the association: private information. However, most LBS ei-

ther do not require full identification or they admit the use of pseudonyms for

billing and/or personalization. In these cases, preserving the anonymity of

the issuer is a successful technique to avoid releasing a sensitive association,

while still providing precise service invocation parameters.

Note that the anonymity problem in LBS has at least two distinguishing

aspects with respect to the analogous problem in the release of data from

databases [44]. First, the fact that each request contains data about the

location of the user at the time of request, introduces spatio-temporal data

as a new kind of potential quasi-identifier, and it is well known that the

effective management of this kind of data requires specific techniques. Sec-

ond, anonymity in databases has been mainly studied considering a one-time

publication of a given set of records, while the problem in LBS is inherently

dynamic: the position of users is continuously changing and this has to be

13

taken into account each time a request has to be anonymized. Moreover,

inferencing based on previously anonymized requests can be used by the

attacker.

Anonymity as a LBS privacy protection technique has been only recently

investigated. Several research contributions (among which [24, 39, 29, 8])

have proposed techniques that aim at enforcing the issuer of a request to

be anonymous, in the sense that an attacker, that can acquire the requests,

must not be able to associate each request to its issuer with likelihood greater

than a threshold value. Unfortunately, most of these papers lack of a clear

understanding of which techniques can be proved to be safe under which

conditions. To solve this problem, a formal framework was proposed in [8].

In this dissertation we adopt this framework and we describe it in details in

the remaining of this chapter.

2.2.2 Formal definition of requests

In this section we formally characterize the original requests that the user

issues to the LTS as well as the generalized requests that the LTS forwards

to the SP.

We denote with R the set containing all the possible original requests

and with R′ the set that contains the possible generalized requests that the

LTS would forward to the SP. We also assume that R′ contains the special

element rnull that represents a request that should not be forwarded to the

SP. If not differently stated, we indicate with r an original request of R and

with r′ a generalized request in R′.

The logical format of an original or generalized request is represented by

the following triple:

〈IDdata, STdata, SSdata〉

• IDdata: in an original request is the exact user identity; in a gener-

alized request it is either empty or contains a pseudo-id.

• STdata: contains spatial-temporal information about the location of

14

the user performing the requests, and the time the request was issued.

• SSdata: the service specific data, that are the parameters character-

izing the request service and the service provider

Given an original or generalized request r, we indicate with r.IDdata (STdata,

SSdata respectively) the attribute IDdata (STdata, SSdata respectively)

of r.

Since we are particularly interested in the spatio-temporal attribute of

a request, we provide more details about the STdata field of a request.

First of all, for the sake of simplifying notation, we use Sdata and Tdata

to denote the spatial and temporal part of STdata, respectively. Given an

original request r, r.Tdata is the time r was issued while r.Sdata is the exact

location of the issuer of r at time instant r.Tdata. In this dissertation, we

assume that r.Sdata is a point in the 2-dimensional space.

Despite some generalization techniques proposed in the literature (e.g.,

[24, 22]) makes it possible to generalize also along the temporal dimension, in

this dissertation we consider the generalization along the spatial dimension

only. As a consequence, given a generalized request r′, r′.Sdata is a region

in the 2-dimensional space and r′.Tdata is a time instant. We also assume

that r′.Sdata is a rectangle with axis parallel edges. The resons of this

assumption are discussed in Section 5.2.

In the rest of this dissertation we indicate with I the set of user identities

and with issuer(r) the user who issued the original or generalized request

r. We also indicate with Atot the total area where the LTS provides privacy

protection. We assume that a user can issue a request only from the location

where she is located, so the spatial component of an original request is the

location of the issuer of that request at the time the request is issued. Given

loci(t) the location of user i at time instant t, this is formalized in Property 1.

Property 1 For each i ∈ I and each r ∈ R such that issuer(r) = i,

loci(r.Tdata) = r.Sdata.

Appendix B contains a summary of the notation used in this dissertation.

15

2.2.3 Formal definition of generalization functions

In this dissertation we focus our attention on the technique in which the

LTS uses a spatial generalization function to transform an original request

into a generalized one.

A deterministic generalization can be defined as a function g : R → R′,

such that, for each original request r, r and g(r) differ in the IDdata and

Sdata fields only. Indeed, during the generalization, the value r.IDdata is

either deleted or substituted with a pseudo-id. Moreover, we only consider

generalization functions that preserve the location i.e., such that the gener-

alized location contains the location of the original request. In terms of our

notation, r.Sdata ∈ g(r).Sdata.

If the LTS uses randomized generalizations, the generalization function

maps a request r ∈ R to a probability distribution on R′.

Definition 1 Given DIST (R′) the set of all possible probability distribu-

tions on R′, g : R → DIST (R) is a randomized generalization function

if for each r ∈ R and r′ ∈ R′ with r′ 6= rnull, the fact that r′ has a non-zero

probability in g(r) implies that r.Sdata ∈ r′.Sdata, r.Tdata = r′.Tdata and

r.SSdata = r′.SSdata.

For simplicity of notation, we assume that R and R′ are discrete sets; it

is not difficult to extend our results for continuous R or R′ sets. If the LTS

uses a randomized generalization function, when it receives a request r from

the user, it randomly chooses a generalized request r′ from R′ following the

probability distribution g(r) and, if r′ 6= rnull, forwards it to the SP.

Clearly a deterministic generalization function is a special case of a ran-

domized generalization function. In the sequel, we will use “generalization

function” to mean either a randomized or a deterministic one based on the

context.

In the following we need to compute, from a generalized request r′, the

original request r that is the potential original request from which r′ is

obtained through a generalization. More formally, we denote with o(r′, i, l)

16

the original request r that is issued by user i from a location l at the time

r′.Tdata with service specific data r′.SSdata. In practice o(r′, i, l) is the

potential original requests issued by i from l that is possibly generalized to

r′.

2.2.4 Formal definition of attacks

The purpose of a generalization function is to render requests safe from

privacy breaches by fuzzifying the location information. We claim that the

safety of a generalization function can only be formally evaluated if the re-

identifying abilities of the attacker are clearly stated. We use C to denote

the context of a possible attack that we describe with a set of assumptions:

• The assumptions about the explicit external knowledge that the at-

tacker could obtain; this could be a public knowledge (e.g., a voter

list) or confidential information (e.g., the identity of a user in a given

location).

• The assumptions about the reasoning abilities of the attacker; For

example, the assumption about the fact that the attacker is (or is

not) able to reason with multiple requests issued by the same user in

different time instants.

Clearly, C changes depending on the applicative context and on the

level of conservativeness of the chosen model. In this paper we assume for

all considered contexts that the attacker has basic reasoning abilities like,

for example, the ability of joining relations and to check for spatial inclusion.

Given a context C, the attacker aims to infer, from a generalized request,

the identity of the user that issued it. We model an attack as the likelihood

of associating a generalized request to a specific identity. In practice, an

attack on a request r′ is a probabilistic distribution on I.

Definition 2 Given a context C, an attack based on context C is a function

17

AttC : R′ × I → [0, 1] s.t. for each r′ ∈ R′,

∑

i∈I

AttC(r′, i) = 1

Given an attack AttC and a generalized request r′, we indicate with ASC

the function that associates to each generalized request r′ the Anonymity Set

of r′ i.e., the set of users that have a non zero probability of being identified

as the issuers of r′. Formally, ASC(r′) is the set of all users i ∈ I such that

AttC(r′, i) > 0.

By Definition 2, it is possible to specify attacks in which, given a request

r′, the users in the anonymity set of r′ have different probabilities of being

the issuer of r′, as shown in Example 3.

Example 3 Consider a location based yellow pages service and the following

context C:

• attacker could acquire the knowledge of the location of each user;

• attacker could acquire the knowledge of the users’ profiles (possibly

obtained during the registration phase);

Suppose that Alice issues a request asking for the closest shop where she

can find classical music. The LTS receives the request and deletes the infor-

mation that could directly lead to Alice’s identity (her name, for example).

Moreover, the exact location of Alice is generalized into an area. Then, the

resulting generalized request r′ is forwarded to the SP.

If an attacker obtains r′, he first uses the location knowledge to restrict

the set of possible issuers to the users whose location is in the region specified

in r′. Suppose this set is composed by three users: Alice, Bob and Carl.

Then, the attacker uses the knowledge of the users’ profiles, to discover that

Alice’s musical interests are closer to the classical genre than those of Bob

and Carl. Hence, this attack is characterized by a higher likelihood for Alice

being the issuer of r′, than Bob or Carl.

18

A special case of the general definition of attack is the one in which all

the users in the anonymity set have the same probability of being the issuer.

We call these attacks uniform.

Definition 3 An attack AttC is uniform if, for all request r′ ∈ R′, for each

pair of users i, i′ ∈ ASC(r′), AttC(i, r′) = AttC(i′, r′).

The relationship between a uniform attack and the anonymity set is

formalized by the following proposition.

Proposition 1 Given a uniform attack AttC based on context C, for each

request r′ ∈ R′ and for each i ∈ I,

AttC(r′, i) =

0 if i 6∈ ASC(r′)
1

|ASC(r′)| otherwise

For the sake of simplicity, in the remainder of this paper, when de-

scribing a specific uniform attack, we will simply identify the corresponding

anonymity set, since it completely characterizes the attack. In the following

we indicate with UAttC the uniform attack characterized by ASC .

2.2.5 Formal definition of defenses

Once we fix a context C and the corresponding attack AttC , we can evaluate

the safety of a request by measuring how likely is an attacker that exploits

AttC to recover the identity of the issuer of a generalized request.

Definition 4 Given an attack AttC and a value h ∈ (0, 1] a request r′ is safe

against AttC , with re-identification threshold h if AttC(r′, issuer(r′)) ≤ h.

If a request is not safe, we say it is unsafe.

In other words, AttC associates r′ to the issuer of r′ with a probability.

If this probability is below (above, respectively) a given threshold h, then

we say r′ is safe (or unsafe, respectively).

The task of the LTS is to avoid to forward to a SP a unsafe request. We

call defense function a generalization function that generates only requests

that are safe against a given attack.

19

Definition 5 Let AttC be an attack and h a value in (0, 1]. A generalization

function g is a defense function against AttC with re-identification threshold

h if for each original request r ∈ R such that g(r) is defined, g(r) is a safe

request against AttC with re-identification threshold h.

2.2.6 Algorithms to compute the generalization function

One of objectives of this research area is to provide algorithms to compute

defense functions. In the following of this dissertation we call generalization

algorithm an algorithm that takes as input, possibly in addition to other

data, an original request and the re-identification threshold and that re-

turns in output a generalized request. Since in this dissertation we focus

our attention on the generalization of the spatial attribute only, the aim of

the algorithms that we illustrate is to compute the generalized area. Once

this region is computed, the generalized request is obtained through the fi-

nalizeGeneralization procedure that takes as input an original request r, a

generalized area A and returns a generalized request r′ with the same time

and service specific data as r, with the explicit identifiers (e.g., name of

the user, IP address, etc...) properly masked and with the exact location

substituted with A.

The objective of the generalization algorithms is to guarantee user’s

anonymity. A generalization algorithm that is proved to compute a defense

function against a given attack is called a defense algorithm.

Definition 6 Let gen be a generalization algorithm, AttC an attack and h

a value in (0, 1]. We say that gen is a defense algorithm against AttC if

the execution of gen with h as re-identification threshold computes a defense

function against AttC with re-identification threshold h.

2.2.7 Extension of the framework for the dynamic case

The framework we defined models the static case. A straightforward ex-

tension is required to model the dynamic case; Indeed, since the attacker

20

can identify traces of requests, the generalization of each request depends

on how previous requests from the same user have been generalized.

In the following of this dissertation, we denote with Θ the set of all

possible traces i.e., the set in which each element is a set of generalized

requests issued by the same user. Formally, Θ ∈ 2R′ is such that, for each

set τ ∈ Θ, for all pairs of requests r′1, r
′
2 ∈ τ , issuer(r′1) = issuer(r′2). The

elements τ ∈ Θ represents the requests already issued by a user. Since each

set of requests τ ∈ Θ is issued by a single user, we indicate with issuer(τ)

the issuer of the requests.

We can now define a deterministic generalization function (in the dy-

namic case) as a function g : R×Θ → R′. Intuitively, g(r, τ) is the request

r′ that generalizes r when τ is the set of requests already issued by issuer(r).

We can similarly extend the definition of randomized generalization func-

tion.

Definition 7 Given DIST (R′) the set of all possible probability distribu-

tions on R′, g : R × Θ → DIST (R′) is a randomized generalization func-

tion (in the dynamic case) if for each r ∈ R, τ ∈ Θ and r′ ∈ R′ with

r′ 6= rnull, the fact that r′ has a non-zero probability in g(r, τ) implies that

r.SData ∈ r′.SData, r.Tdata = r′.Tdata and r.SSdata = r′.SSdata.

The definitions of attack, safe request and defense function defined for

the static case do not need to be extended for the dynamic case. On the

contrary, the definitions of generalization algorithm and of defense algo-

rithm need to be extended by stating that the input includes, in addition to

the original request r, the re-identification threshold h and possibly other

paramethers, the set τ of generalized request already issued by the issuer of

r.

21

22

Chapter 3

Techniques to enforce

anonymity in the static case

In this chapter we specify three contexts in the static case. Contexts Cst and

Cst+g (presented in Sections 3.1 and 3.2, respectively) had been considered,

implicitly or explicitly, in most of the previous works [24, 22, 39, 29, 8, 37,

23, 6]. Context Cast+g, defined in Section 3.3, has not been considered in any

previous work, to the best of our knowledge. For each of the three contexts,

we specify the corresponding attack, we describe the existing defenses (if

exist) and propose new generalization algorithms.

We conclude this chapter with the experimental results to empirically

compare the generalization algorithms proposed for contexts Cst and Cst+g.

3.1 Context Cst: a model for spatio-temporal anonymity

3.1.1 Context definition

Most of the papers in this research area did not explicitly state the assump-

tions about the external knowledge available to the attacker and about his

reasoning abilities. However, many papers [24, 22, 39, 29] implicitly consid-

ered a common context that we refer to as Cst and that we model in this

section.

23

The idea of the Cst context is that users can be identified through their

location, and therefore user’s privacy is endangered if a generalized request

contains precise information about issuer’s location. For example, an at-

tacker can understand user’s identity from user’s location through the phys-

ical observation of the user, or because the user is the only one that can be

in that location (a suburban house, for instance).

In context Cst it is assumed that the attacker could acquire the knowl-

edge about the exact location of each user and that the attacker is not able

to reason with more than one request. It may seem unrealistic that the at-

tacker knows the location of each user; however, if an attacker can possibly

know the location of one user (not too outrageous an assumption), it is quite

natural to assume the worst case, namely he knows the location of all users.

This assumption may be relaxed by saying that the attacker can only have

an approximate knowledge of the locations where some users are located.

This knowledge is modeled in Section 3.3.

The uniform attack based on context Cst is characterized by the anonymity

set of users who are located within the area specified in the generalized re-

quest.

Definition 8 Let Cst be the context in which it is assumed that for each

identity i ∈ I the attacker knows the association of i with the location of i.

For each generalized request r′, the anonymity set based on context Cst

is:

ASCst(r
′) = {i ∈ I|loci(r′.Tdata) ∈ r′.Sdata}

The idea is that the more users are located inside r′.Sdata, at the time

the request is issued, the more anonymous is the issuer of r′.

Definition 9 In context Cst, a generalized request r′ is said to be k-anonymous

if |ASCst(r′)| ≥ k.

The solutions to the anonymity problem in context Cst provided in

[22, 39, 29, 24] guarantee anonymity by generalizing the Sdata field of the

24

incoming request and forwarding to the SP only requests r′ such that r′ is

k-anonymous in context Cst.

Theorem 1 shows that, considering context Cst, a generalization func-

tion that generates k-anonymous requests is a defense function, and that

the parameter k is the inverse of h. The proof of the theorem, as well as

all the other proofs of the theorems in this dissertation, can be found in

Appendix A.

Theorem 1 Let k be an integer and g() a generalization function such that,

for each original request r, g(r) is k-anonymous in context Cst. Then, g()

is a defense function against UAttCst with threshold 1/k.

3.1.2 Defense algorithms against AttCst proposed in the lit-

erature

In the following, we describe three generalization algorithms proposed in the

literature. From Theorem 1, it easily follows that the algorithms are defense

algorithm against AttCst . For each algorithm, we also discuss its temporal

complexity.

Interval Cloaking Generalization Algorithm

The first algorithm to compute a generalization function that appeared in

the literature was named IntervalCloaking [24]. The idea of the algorithm

is to iteratively divide the total region Atot where the LTS provides pri-

vacy protection. At each iteration the current area qprev is partitioned into

quadrants of equal size. If less than k users are located in the quadrant q

where the issuer of the request is located, then qprev is returned. Otherwise,

iteration continues considering q as the next area.

In order to evaluate the time complexity of the algorithm it is necessary

to make some assumptions about the data structures. In our implementation

of the algorithm, we used a data structure consisting of a quadTree in which

each leaf has a pointer to a user, and each internal node n stores the number

25

of users “contained” in n i.e., the number of users stored in the subtree that

has n as root. The generalization algorithm traverses the quadTree from the

root to the first internal node that contains at least k users. Each iteration

of the algorithm is performed in constant time and the number of iterations

is bounded by the height of the quadTree. In the worst case, the height of

the tree is linear in the cardinality of the set I of users hence the algorithm

has a worst case time complexity of O(|I|). However, if users are uniformly

distributed, the height of the tree is logarithmic in the number of users hence

the algorithm has a worst-case time complexity of O(log(|I|)).

Casper Generalization Algorithm

Mokbel et al. [39] propose Casper, a framework for privacy protection that

includes a generalization algorithm. In this paper we consider the “basic”

data structure1 used by Casper i.e., a balanced quadTree in which each node

has a pointer to its parent, and users are stored in leaf nodes only. Moreover,

the data structure consists of a table in which each user i is associated with

the leaf node that contains i. The generalization algorithm starts from the

leaf node that contains the issuer of the request, and iteratively traverses the

tree towards the root until an area that contains at least k users is found.

At each iteration, the algorithm considers the union of the area covered by

the current node n and the horizontally (vertically, resp.) contiguous area

covered by its sibling node. If only one of these two joined areas contains

more than k users, that area is returned; if both of them contain more than

k users, the one containing the minimum number is returned; otherwise,

the algorithm proceeds with the next iteration. Similarly to IntervalCloak-

ing, the worst case time complexity of Casper is linear in the height of the

quadTree. However, in this case, this height is bounded by the logarithm

of the number of leaf nodes if users are uniformly distributed, and it is at

most linear in the same number, otherwise.
1For the purpose of this dissertation, there is no need to consider the “adaptive” data

structure proposed in the paper.

26

nnASR Generalization Algorithm

Conceptually, one of the simplest ways to generalize a request is to compute

the k Nearest Neighbor query among the users and return the MBR of the

result. Following this idea, Kalnis et al. [29] propose the nnASR general-

ization algorithm that picks a random user i in the set of the k − 1 users

that are closest to the issuer, and returns the MBR of the set containing i,

the issuer, and the k − 1 users closest to i. In our implementation of the

nnASR algorithm we used a kd-Tree to store users’ locations, making pos-

sible to compute k Nearest Neighbor queries in logarithmic expected time

with respect to the number of users.

3.2 Context Cst+g: a model for spatio-temporal

anonymity when the generalization function is

known to the attacker

3.2.1 Context definition

In this section we give a formal explanation to the counterattacks illustrated

in the literature to the defense techniques first proposed in context Cst. In a

nutshell, the counterattacks implicitly consider the generalization function

as publicly known, while the defense technique assumed otherwise.

Assume an attacker obtains a generalized request r′ and knows, in addi-

tion to the knowledge of Cst, the generalization function g used by the LTS.

In this case, the attacker can compute, for each user i ∈ I, the potential

original request ri that would be send to the LTS if i was the issuer. Then

the attacker can check if g(ri) equals r′. If it does, then i is a potential

issuer, otherwise the attacker can understand that i is not the issuer of r′.

Example 4 User i1 issues a request r1 to the LTS. The required anonymity

threshold h is 1/3, hence r1 is generalized, using algorithm g, to a request r′

such that i1, i2 and i3 are located inside r′.Sdata.

27

If an attacker obtains r′, he can compute, for each user i ∈ I, the po-

tential request ri and then apply g() to each ri. Since r′.Sdata includes the

locations of i1, i2 and i3 only, for any user i not in {i1, i2, i3} the potential

request ri is generalized to a request r′′ 6= r′. So, the only three user whose

potential request could be generalized to r′ are i1, i2 or i3. Assume that r3

is generalized to a request r′′′ that is different from r′ while both r1 and r2

are generalized into r′. Figure 3.1 gives a graphical representation of this

situation.

I

i1

i2

in

r1

r2

rn

issued by

issued by

issued by

r'
g

g

r''g

R

i3 r3
issued by r'''g

Figure 3.1: Example of attack in context Cst+g.

Since i1 and i2 have the same probability of being the issuer of r′, the

attacker can identify the issuer of r′ with probability 1/2, hence r′ is unsafe

with respect to this attack with the required threshold of 1/3.

We indicate with Cst+g the context in which the attacker, in addition

to the knowledge and reasoning abilities of the context Cst, also has the

knowledge of the procedure that the LTS used to compute the generalization

g(). In this context the following attack can be defined:

Definition 10 Let Cst+g be the context Cst in which the attacker also knows

the procedure used by the LTS to compute the generalization function g().

The attack based on context Cst+g is given by

AttCst+g(r
′, i) =

P [g(o(r′, i, loci(r′.Tdata)) = r′]∑
j∈I P [g(o(r′, j, locj(r′.Tdata)) = r′]

28

Intuitively, the attack AttCst+g(r
′, i) is the probability that an original

request r issued by user i is generalized to r′. This probability is then

normalized for all the users in I.

Theorem 2 proves that, ASCst+g(r
′) ⊆ ASCst(r′). This implies that

AttCst+g has more re-identification power than the uniform attack in context

Cst. In addition, it suggests an efficient procedure to compute AttCst+g(r
′, i).

Indeed, given ri = o(r′, i, loci(r′.Tdata)) the potential request issued by user

i, P [g(ri) = r′] = 0 if the location of i is outside r′.Sdata.

Theorem 2 For each generalized request r′, ASCst+g(r
′) ⊆ ASCst(r′).

Intuitively, Theorem 2 states that, given a generalized request r′ = g(r),

the set of possible issuers of r′ computed exploiting the knowledge of the

function g() is a subset of the set of users whose location is within r′.Sdata.

This implies that, if g() is known to the attacker, a request that is k-

anonymous according to Definition 9, may nevertheless be associated to

the issuer with likelihood greater than 1/k.

Corollary 1 Let r′ be a generalized request. The k-anonymity of r′ in con-

text Cst is a necessary but not sufficient condition for r′ to be a safe request

against AttCst+g with threshold 1/k.

The “necessary” part immediately follows Theorem 2, while the “not

sufficient” part is shown with Example 5.

Corollary 1 shows that the notion of k-anonymity of a request is not suf-

ficient in order to guarantee user’s privacy when the generalization function

is known to the attacker. In Example 5 we show, in terms of our framework,

why the generalization function proposed in [24] is not a defense function

against AttCst+g with threshold 1/k.

Example 5 Figure 3.2 shows four user locations. Users u1, u2 and u3 are

close to each other, while u4 is far away. Consider a generalization function

g() that gives the minimum rectangular area that contains the area of a

request as well as at least other k−1 users. In our example, a request issued

29

by u1, u2 or u3 is generalized into a request that has A2 as Sdata while a

request issued by u4 is generalized into a request that has A1 as Sdata.

Figure 3.2: Example of attack when the generalization function is known to

the attacker.

As we proved in Theorem 1, g() is a defense function against the uniform

attack characterized by ASCst with threshold 1/3. On the contrary, if we

assume that the attacker knows the generalization function, then g() is not

a defense function against the uniform attack characterized by ASCst+g for

any threshold in (0, 1). Indeed, let r be a request issued by u4 and r′ the

generalization of r such that r′.Sdata = A1. Since any request issued by

u1, u2 or u3 would be generalized into a request different from r′, the only

possible issuer of r′ is u4.

3.2.2 A class of defense algorithms

In this section we show how the formal framework defined in Section 2.2 can

be useful to define a defense function against a given attack. In particular,

we consider AttCst+g , as defined in Section 3.2.1, and we show how to define

a class of algorithms to compute a defense function.

Since the attacker’s knowledge assumed in Cst+g subsumes the attacker’s

knowledge in Cst, and in the two contexts the attacker has the same rea-

soning abilities, the defense function against AttCst+g should also provide

protection against UAttCst . This consideration suggests us a two steps pro-

cedure to define the algorithm that computes the defense function against

AttCst+g :

30

1. define algorithm Genst that provides protection against UAttCst ;

2. alter Genst to obtain Genst+g that provides protection against AttCst+g .

We define algorithm Genst inspired by the IntervalCloaking generaliza-

tion algorithm [24] described in Section 3.1.2. The idea of Genst is to itera-

tively restrict the anonymity set that is stored in the variable AS initialized

to I. At each iteration AS is partitioned. If the block b that contains the is-

suer contains at least k users, then AS is set to b and the iteration continues.

Otherwise, the algorithm terminates returning the generalized request that

has the MBR (Minimum Bounding Rectangle) of the locations of the users

in AS as the generalized location. Genst does not automatically provide

protection against AttCst+g due to a problem similar to that described in

Example 5. A solution consists in: i) imposing the partitioning function to

be independent from the issuer’s location and ii) modifying the termination

condition of Genst so that the algorithm terminates if any of the blocks into

which AS is partitioned contains less than k users. The resulting algorithm

is Genst+g and is shown as Algorithm 1.

Algorithm Genst+g iteratively restricts the set AS of candidate identities

by successively partitioning it. The iteration terminates when a further

partitioning would contain at least one block with less than k users. Finally,

the algorithm returns the set of the users in the anonymity set.

Note that Algorithm 1 does not specify how the users should be par-

titioned during each iteration. Provided that the partition is computed

independently from the issuer, any procedure to partition the set of users

can be used. Hence, in practice, Algorithm 1 is a class of algorithms that

can be instantiated providing a specific procedure to compute the partition.

The correctness of Algorithm 1 follows from the fact that, given r′ =

Genst+g(r, h), the set of users whose location is inside r′.Sdata is such that,

if any of them issues a request r1, then Genst+g(r1, h) would return a gen-

eralized request with the same area as r′. In order to have this property,

the partitioning procedure should be computed independently from r. This

is the intuition of the proof of Theorem 3 that formalizes the correctness of

31

Algorithm 1 Genst+g

Input: an original request r, a value h ∈ (0, 1].
Output: a generalized request that is safe against AttCst+g with re-
identification threshold h.
Method:

1: AS = I;
2: cont =true
3: while (cont) do
4: partition AS into AS1, . . . , ASn;
5: if (∃j ∈ {1, . . . , n} such that |ASj | < 1/h) then
6: cont =false;
7: else
8: AS = ASj where ASj is the block in AS1, . . . , ASn that contains

issuer(r);
9: end if

10: end while
11: return finalizeGeneralization(r,MBR(AS))

the algorithm.

Theorem 3 If the partition procedure of Line 4 of Algorithm 1 is determin-

istic and has AS as the only parameter, then algorithm Genst+g is a defense

algorithm against AttCst+g .

3.2.3 A defense algorithm proposed in the literature

To the best of our knowledge, the first defense algorithm against AttCst+g

was proposed by Kalnis et al. [29], and it was called hilbASR. The algorithm

is an instance of Genst+g in which the partitioning is obtained exploiting the

Hilbert space filling curve2 to define a total order among users’ locations. A

data structure is then used to store users in the order defined through the

Hilbert space filling curve. Intuitively, the hilbASR generalization algorithm

partitions the data structure into blocks of k users: the first block from the

user in position 0 to the user in position k− 1 and so on (note that the last
2A space filling curve transforms 2-D coordinates into 1-D coordinate. With high

probability, two points that are close to each other in the 2-D coordinates are also close

to each other in the transformed 1-D coordinate.

32

block can contain up to 2 · k − 1 users). The algorithm then returns the

block that contains the issuer. The worst case time complexity of hilbASR

is O(log(|I|)). Indeed, the algorithm does not actually compute all the

blocks of the partition, but instead only finds the block that contains the

issuer. Therefore, the only non-constant operation that is required is to find

the issuer in the data structure, and this operation can be completed in

logarithmic time.

3.2.4 DichotomicPoints defense algorithm

In the preliminary paper [37], Mascetti et al. propose a defense algorithm

against AttCst+g called dichotomicPoints that is shown in Algorithm 2. The

algorithm iteratively partitions the set of users into two sets. The idea is

that the users are totally ordered according to their locations considering

first one axis, then the other, and if necessary even the user identifier3; Then,

considering the user u whose position is in the middle of the totally ordered

set of positions4, the algorithm partitions the users into two blocks: the ones

before u, and the remaining ones. Iteration continues considering only the

users in the block that contains the issuer.

At each iteration, in order to chose which axis to consider first for the

total ordering, the algorithm computes the maximum and minimum values of

users’ locations projected on each axis. Then, the axis having the maximum

value of the difference is chosen (Lines 3 to 13). The dichotomicPoints

algorithm terminates when the block that contains the issuer has cardinality

smaller than 2 · k; Then it returns the generalized request having the MBR

of the users in the block as generalized location.

The idea of computing a generalization by iteratively splitting the users

along one of the dimensions also appeared in the Anonymize algorithm pre-

sented in [33] to generalize database relations. Despite this similarity, the

two algorithms have been independently designed.

3We assume that each user has a unique user identifier.
4When there is an even number r of users, user u is the one in position r/2.

33

Algorithm 2 dichotomicPoints

Input: an original request r, a value h ∈ (0, 1].
Output: a generalized request that is safe against AttCst+g with re-
identification threshold h.
Method:

1: the array AS is initialized with the identities of all users (I)
2: while (|AS| ≥ 2/h) do
3: minx = mini∈AS(loc(i).x)
4: maxx = maxi∈AS(loc(i).x)
5: miny = mini∈AS(loc(i).y)
6: maxy = maxi∈AS(loc(i).y)
7: if ((maxx −minx) ≥ (maxy −miny)) then
8: firstOrder = x
9: secondOrder = y

10: else
11: firstOrder = y
12: secondOrder = x
13: end if
14: sort AS according first to firstOrder, then to secondOrder, and even-

tually to user identifiers.
15: pivot = b|AS|/2c
16: issuerIndex = the index such that AS[issuerIndex] = issuer(r)
17: if (issuerIndex < pivot) then
18: AS = AS[0] . . . AS[pivot− 1]
19: else
20: AS = AS[pivot] . . . AS[|AS| − 1]
21: end if
22: end while
23: return finalizeGeneralization(r,MBR(AS))

Example 6 Consider the positions of 20 users, as shown in Figure 3.3(a).

Assume that user i issues a request and that the re-identification threshold is

1/2. The dichotomicPoints algorithm computes the necessary generalization

in three iterations of its main cycle. Each of the three Subfigures 3.3(a)

3.3(b), and 3.3(c) shows the set of positions included in the current AS

array computed by that iteration (as black filled circles), as well as the rest

of the users’ positions.

The array AS is initialized to the identities of the 20 users in our ex-

34

ample. In the first iteration, the difference between the maximum and min-

imum value over the set of all projections of user positions on the x axis is

compared with the difference between the maximum and minimum value on

the y axis. Since in this example the difference along the y axis is larger,

the array AS is sorted considering the values on this dimension first. The

pivot variable is assigned with the value 10, which in AS happens to be the

index of user u1. Since the issuer i has index 12, AS is reassigned to con-

tain only the identities of u1 and of the users with greater indexes (i.e.,

AS = AS[10], . . . , AS[19]).

In the second iteration, considering the projections on the x and y axis

of the positions of the 10 users currently in AS, the x axis is selected as

firstOrder; the reason can be clearly seen observing the black filled circles

in Figure 3.3(a) that also represents the set of positions considered in the

second iteration. Hence, this time AS is sorted considering first projections

of positions on x. In the resulting array, the pivot is computed as 5, which in

Figure 3.3(b) corresponds to user u2. Since now the issuer i has index 3, AS

is reassigned to contain only the identities of the users with indexes smaller

than 5, i.e., the users located at the left of u2. (AS = AS[0], . . . , AS[4]).

In the third iteration, AS is again sorted considering first projections of

positions on x. The pivot is 2, which in Figure 3.3(c) corresponds to user

u3. Since the issuer i has index 3, AS is reassigned to contain AS[2], AS[3],

and AS[4], i.e., the identities of the users with indexes greater than or equal

to 2, discarding the users whose location is at the left of u3.

Since AS now contains less than 2·k = 4 users, the algorithm terminates

returning users i, u3 and u4.

Note that dichotomicPoints terminates when a block contains less than

2 ·k users and therefore any further partitioning would generate a block with

less than k users. Therefore, dichotomicPoints is an instance of the class of

defense algorithms presented in Section 3.2.2, hence it is a defense algorithm

against AttCst+g .

35

(a) First iteration (b) Second iteration (c) Third iteration

Figure 3.3: Example of dichotomicPoints algorithm

Theorem 4 dichotomicPoints is a defense algorithm against UAttCst+g .

The data structure that we used in the implementation of dichotomic-

Points consists of two arrays, orderx and ordery, containing the users or-

dered according to the horizontal and vertical axis, respectively. At each

iteration, the user locations that are not in the same block as the issuer are

removed from the two arrays. So, at each iteration it is necessary to find the

user location in the middle of the correct array, to count how many users

will be in each block and to remove the users that are not in the same block

as the issuer. The first two operations can be performed in constant time,

while the last one requires a time linear in the size of the two arrays. Since

the number of iterations is logarithmic in the number of users and each it-

eration requires time linear in the number of the users, the worst case time

complexity of the algorithm is O(|I| · log(|I|)).

3.2.5 Grid defense algorithm

A different defense algorithm against AttCst+g is shown in Algorithm 3 and it

is called grid. This algorithm partitions the set of users in two steps. During

the first step, users are totally ordered considering their location along the x

axis, then along the y axis and eventually according to their user identifier.

This ordered set of users is then partitioned into blocks of consecutive users,

36

each block having the same number of users except the last block that may

contain more users than the previous ones. Only the users that are in the

same block as the issuer are considered in the second step in which users are

ordered considering first their location along the y axis, then their location

along the x axis and eventually according to their user identifier. Using this

ordering, users are partitioned similarly to what is done in the first step.

Eventually, a generalized request is returned having as generalized location

the MBR of the users that are in the same block as the issuer.

Algorithm 3 Grid

Input: an original request r, a value h ∈ (0, 1].
Output: a generalized request that is safe against AttCst+g with re-
identification threshold h.
Method:

1: k = d1/he
2: the array AS is initialized with the identities of all users (I)
3: nob =

⌊√
|AS|/k

⌋
{number of blocks}

4: if (nob ≤ 1) return the set of all user identities (I)
5: for (dim ∈ {x, y}) do
6: if (dim = x) then
7: sort AS according first to the location on x, then to the location on

y and eventually to the user identifier.
8: else
9: sort AS according first to the location on y, then to the location on

x and eventually to the user identifier.
10: end if
11: issuerIndex = the index such that AS[issuerIndex] = issuer(r)
12: upb = b|AS|/nobc {users per block}
13: ibi = bissuerIndex/upbc {issuer’s block index}
14: if (|AS| mod nob = 0 OR ibi < nob− 1) then
15: start = ibi · upb
16: end = start + upb− 1
17: else
18: start = (nob− 1) · upb
19: end = |AS| − 1
20: end if
21: AS = AS[start] . . . AS[end]
22: end for
23: return finalizeGeneralization(r,MBR(AS))

37

Example 7 Figure 3.4(a) shows the same position of 20 users as considered

in Example 6 with the issuer i of a request in the same position. We show

the execution of the grid algorithm, with re-identification threshold equals to

1/2.

The array AS is set to contain the identities of the 20 users. In the first

step, AS is sorted considering first the values of users’ locations on the x

axis. Since the number of blocks (nob) into which AS should be partitioned

is
⌊√

20/2
⌋

= 3, the number of users in each block (upb) is computed as

b20/3c = 6. Then, since the issuer has index 8 in AS, the index of the

block containing the issuer (ibi) is computed as b8/6c = 1. Consequently,

AS is reassigned to the set of users in the same block as the issuer. More

technically, start and end are computed as 6 and 11, and AS is set to contain

only AS[6], . . . , AS[11].

In the second step, AS, currently containing 6 users (identified in Fig-

ure 3.4(b) as black filled circles) is sorted considering first the users’ po-

sitions along the y axis. Since the value of nob cannot change after it is

initialized, AS is again partitioned into 3 blocks. Considering that AS now

contains 6 user identities, each of the new blocks has to contain 2 users.

Since the issuer has now index 3 in AS, the index of the block that contains

the issuer (ibi) is computed as b3/2c = 1. Therefore, AS is reassigned to

contain only AS[2] and AS[3], and this is the set of users’ identities returned

by the algorithm.

Theorem 5 proves that grid is a defense algorithm against AttCst+g . Intu-

itively, the correctness of the algorithm relies on the fact that the product of

the number of blocks into which users are partitioned along the two dimen-

sions is less than or equal to b|I| · hc. This implies that the set I of users is

partitioned at most into b|I| · hc blocks of about the same size, hence each

block contains at least 1/h users. This is the reason why the number of

blocks along each dimensions is
⌊√

|I| · h
⌋
.

Theorem 5 grid is a defense algorithm against AttCst+g .

38

(a) First step (b) Second step

Figure 3.4: Example of grid algorithm

In order to compute the grid algorithm, we use a data structure that

keeps the users totally ordered according to their location along the x axis,

then along the y axis and eventually according to their user identifier. There-

fore, during the first step of the algorithm it is not necessary to sort the set

of users and the only non-constant operation is to find the index of the is-

suer. This operation has a worst case time complexity logarithmic in the

size of |I|. During the second step, it is necessary to sort the users that,

during the first iteration were in the same bucket as the issuer. Since these

users are at most 2(|I|/
⌊√

|I| · h
⌋
)− 1, in the worst case this operation can

be performed in time O(
√
|I|/h · log

√
|I|/h). Hence, the worst case time

complexity of grid algorithm is given by O(log |I|+
√
|I|/h · log

√
|I|/h) that

is equal to O(
√
|I|/h · log

√
|I|/h).

3.3 Context Cast+g: modeling approximate knowl-

edge of users’ location

In this section we model the case in which the attacker has an approximate

knowledge of users’ locations. In the following, we present a formalism to

model this kind of attacker’s knowledge, we specify the attack based on

39

this knowledge and we present our preliminary results in the definition of a

defense function.

3.3.1 Context definition

We model the case in which the attacker has an approximate knowledge

of users’ locations by assuming that the attacker knows, for each user, the

probabilistic distribution of possible areas where the user is located. In

Section 3.3.3 we show how this probabilistic distribution can be derived

from publicly available external information.

To formally model this knowledge, we define a partition ⊥S of the total

area Atot where the LTS protects users’ privacy. Intuitively, ⊥S represents

the bottom spatial granularity and therefore we call its elements spatial gran-

ules. In the following we assume that each 2D-region we refer to can be rep-

resented as the union of a finite number of spatial granules. Consequently,

given a 2D-region A, we indicate with s ∈ A the set of granules of ⊥S whose

union yields the region A.

Once ⊥S is defined, we model the attacker’s external knowledge as the

probabilistic distribution of the possible locations where each user is located.

Definition 11 Given a set of users I and the bottom spatial granularity

⊥S, the possible user locations function pul : I × ⊥S → [0, 1] is such that

for each user i ∈ I,
∑

s∈⊥S
pul(i, s) = 1.

Once a possible user locations function is defined for each spatial granule,

it can be easily extended for each area A in Atot as follows:

∀i ∈ I, pul(i, A) =
∑

s∈A

pul(i, s)

Given the possible user location function, we can define the probability

that, a single user located in an area A has identity i. We denote this proba-

bility as p(i, A). Intuitively, the value of p(i, A) is given by the probability of

i being in A, divided by the estimated number of users in A that is given by

the sum, for each user in I, of the probability of i being located in A. If there

40

are no users having any probability of being located in A, we assume p(i, A)

to be equal to zero for each i ∈ I. Formally, given enu(A) =
∑

i∈I pul(i, A)

p(i, A) =

0 if enu(A) = 0
pul(i,A)
enu(A) otherwise

We can now define the attack that can be performed with an approximate

knowledge of users’ locations.

Definition 12 Let Cast+g be the context in which the attacker knows, i) the

generalization algorithm used by the LTS, ii) the set I of users, and iii) the

function pul(i, s), for each i ∈ I and each s ∈ ⊥S.

Then, for each generalized request r′, and each user i ∈ I, the attack

based on context Cast+g is:

AttCast+g(r
′, i) =

∑
s∈r′.Sdata(p(i, s) · P [g(o(r′, i, s)) = r′])∑

j∈I

∑
s∈r′.Sdata(p(j, s) · P [g(o(r′, j, s)) = r′])

The idea of Definition 12 is that the probability of a user being the issuer

of a request r′ is given by the sum, for each granule s ∈ r′.Sdata, of the

probability of the user issuing the request from s times the probability that

an original request issued by i from s is generalized to r′. This value is then

normalized to 1 (by the denominator) for all the users in I.

Example 8 Let consider a set ⊥S equals to {s1, s2, s3, s4, s5} and that a set

of users I equals to {i1, i2, i3}. The values of the pul function at time t are

shown in Table 3.1.

i1 i2 i3

s1 1/3 1/36 1/4

s2 1/3 1/36 1/24

s3 1/4 1/36 1/24

s4 1/18 1/4 4/9

s5 1/36 2/3 2/9

Table 3.1: Values of the pul function

41

Let r′ be a generalized request issued by i1 with an anonymity threshold

h = 1/2 such that r′.Sdata = {s1, s3} and r′.Tdata = t. Moreover, let the

generalization function g used by the LTS be such that P [g(o(r′, s1)) = r′] =

1 and P [g(o(r′, s3)) = r′] = 1. Then, the attack based on context Cast+g

associates r′ to user i1 with likelihood

1/3 + 1/4
1/3 + 1/4 + 1/36 + 1/36 + 1/4 + 1/24

= 42/67 > 1/2

Therefore, r′ is unsafe with respect to attack Attast+g with threshold 1/2.

3.3.2 PartitionArea generalization algorithm

Algorithm 4 shows a generalization algorithm. The idea of the algorithm

is similar to the idea of the dichotomicArea algorithm [37] and consists in

iteratively partitioning a 2D-region A that is initialized to Atot. At each

iteration, a partition of A is computed. For each block B, if any user could

be identified, using context Cast, as the issuer of a request having B as the

generalized location, with likelihood greater than h, then the algorithm ter-

minates returning a generalized request that has A as generalized location.

Otherwise, iteration continues and the value of A is set to the block that

contains the location of the issuer.

We believe that PartitionArea is a defense algorithm against Cast+g

because, if r′ is the output of PartitionArea(r, h), then for any other request

r1 issued from r′.Sdata, PartitionArea(r1, h) returns a request r′1 that has

the same generalized area as r′. We leave the formal proof as a future work.

Conjecture 1 PartitionArea is a defense algorithm against AttCast+g .

The efficiency of Algorithm 4 relies on the complexity of the evaluation

of the if statement at Line 6 and on the partition procedure used at Line 5.

In our implementation, we used a partitioning procedure and we adopted a

data structure that make it possible to execute Algorithm 4 in logarithmic

time with respect to the number of granules of ⊥S whose union yields Atot.

For the sake of simplicity, in the following we assume the granules of

⊥S to be squares of the same size, and Atot to be a rectangle. Note that

42

Algorithm 4 PartitionArea
Input: an original request r, a value h ∈ (0, 1].
Output: a generalized request that is safe against AttCast+g with re-
identification threshold h.
Method:

1: A = Atot

2: continue = true
3: i = issuer(r)
4: while (continue) do
5: par = partition(A)
6: if (exists a user j ∈ I and a block B in par s.t. p(j, B) > h) then
7: continue =false
8: else
9: A = the block B of par s.t. r.Sdata ∈ B

10: end if
11: end while
12: return finalizeGeneralization(r,A)

our solution can be easily adapted to work without these assumptions. The

partitioning procedure partition(A) used at Line 5, partitions the parameter

area A in two sub-areas along one of the two axis, choosing the axis on whose

projection A is larger. Intuitively, if A is a rectangle covering x granules on

one dimension and y granules on the other, assuming x > y, the two blocks

resulting from the partition of A will have bx/2c · y and dx/2e · y granules,

respectively.

Based on this partitioning function, we define the data structure pTree

composed by a binary tree in which each node pNode points to a region A

(we denoted this as pNode.A). The root of the tree points to Atot and the

leafs point to elements of ⊥S . Each internal node pNode has two children,

pointing to the two blocks of partition(pNode.A). Each pNode has also a

pointer to the value pMax (denoted by pNode.pMax), that is the maximum

value of p(i, pNode.A) for all the users i ∈ I.

Using this data structure, the PartitionArea algorithm can be computed

by traversing the tree from the root to the leafs. The condition of the if

statement can be evaluated in constant time, since it requires to compare h

43

with the values of pMax for the two children of the pNode that is currently

being processed. Since the partition procedure is also executed in constant

time, each iteration requires a constant time. The number of iteration is

bounded by the height of the binary tree that logarithmic in the number of

granules of ⊥S whose union yields Atot.

3.3.3 Specification of the pul function from publicly available

information

In Section 3.3.1 the pul function is defined to specify an attack based on

context Cast+g. However, in practice, it is unlikely that external knowledge

available to the attacker contains the values of this function. Nevertheless,

the function can be derived from some other forms of external knowledge.

In this section we show how the pul function can be derived from a partial

function ex that represents the explicit external knowledge available to the

attacker.

Example 9 shows how the pul function of Example 8 can be derived

from publicly available information. For the sake of brevity, the example

considers user i1 only.

Example 9 Assume an attacker knows that i1 works in an area that cor-

responds to s1 ∪ s2 and that i1 lives in an area that corresponds to s3. This

information can be computed by first obtaining the addresses from public

databases, like voter lists or lists of employees and then mapping the ad-

dressed to the physical location. Moreover, assume that the request the at-

tacker obtain is issued during working hours.

The attacker knows that, on average, during working hours, people have

2/3 of probabilities of being at work and 1/4 of probability of being at home.

If i1 is at work, then he can be either in s1 of in s2. Since the attacker has

no knowledge about users’ distribution inside s1 or s2, he can only assume

an uniform distribution. Hence, assuming s1 and s2 have the same size, if

i1 is at work, then she has 1/2 of possibility of being in s1 or s2. Clearly,

since i1 has 2/3 of possibilities of being at work, the probability of being in

44

s1 is equal to the probability of being in s2 that is equal to 1/3. Hence,

pul(i1, s1) = pul(i1, s2) = 1/3.

Since i1 has 1/4 of probability of being at home, pul(i1, s3) = 1/4.

If i1 is not at work nor at home (1/12 of probability), she can be in

s4 or s5. Since s5 is twice as big as s4, it is twice more likely that i1 is

located in s5 than in s4. Consequently, pul(i1, s5) = 1/12 · 2/3 = 1/18 and

pul(i1, s4) = 1/12 · 1/3 = 1/36.

Formally, we assume the explicit knowledge to be defined by the ex func-

tion.

Definition 13 We define the explicit knowledge as a partial function ex :

I×2⊥S → [0, 1] such that, for each i ∈ I, given defi = {A ⊆ Atot|ex(i, A) is defined},
⋂

A∈defi
A = ∅ and

∑
A∈defi

ex(i, A) ≤ 1.

Intuitively, for each user, ex is a partial function that associates some

non overlapping areas with the probability of the user being located in these

areas.

Definition 14 shows how to extend the partial function ex to the complete

function pul.

Definition 14 Given the explicit knowledge function ex, defi = {A ⊆
Atot|ex(i, A) is defined} and undefi = Atot \

⋃
A∈defi

A, for all s ∈ ⊥S and

i ∈ I, the possible user location function pul(i, s) corresponding to ex is:

pul(i, s) =

ex(i, A) · Area(s)
Area(A) if ∃A ∈ defi s.t. s ∈ A

(1−∑
A∈defi

ex(i, A)) · Area(s)
Area(undefi)

otherwise

Intuitively, in the regions A where the explicit knowledge is provided,

the probabilities are uniformly distributed among the spatial granules whose

union yields A. Where the explicit knowledge is not provided, the propabil-

ities that has not been assigned (if any) are uniformly distributed.

45

3.4 Empirical Evaluation of Generalization Algo-

rithms

In this section we show the results of the experiments we performed for the

defense algorithms in contexts Cst and Cst+g. We leave as a future work the

empirical evaluation of the PartitionArea defense algorithm.

Since, in most of previous works [24, 39, 29] the degree of anonymity k

was used to evaluate the anonymity of a request, in this section we use this

parameter instead of the re-identification threshold h. However, we recall

that h = 1/k.

3.4.1 Experimental setting

We performed an extensive experimental evaluation of the defense algo-

rithms against UAttCst and AttCst+g . We used two synthetic datasets; In

both cases, the total area of the considered map is about 100 km2 and the

maximum number of users is 500, 000. In the first dataset, users are uni-

formly distributed, while in the other, users’ locations are generated by the

moving object generator developed by Brinkhoff [16] that was set to generate

users’ locations in the streets of the city of San Francisco. In the experi-

ments with 500, 000 users, the average density of users for km2 is about 5, 000

which is in the same range of the real density of population in that area.

We identified two main parameters for each test: the degree of anonymity k

(i.e., the inverse of the re-identification threshold), and the total number p

of users.

We implemented the algorithms using Java, and we performed our tests

on a Linux machine with two 2,4Ghz Pentium Xeon processors and 4GB of

shared RAM. All the output values presented in this section are obtained

by running 1, 000 tests and taking the average.

In order to compare the regions returned by the generalization algo-

rithms with the smallest possible generalized region, we implemented the

46

optimalUnsafe generalization algorithm5. This algorithm computes the set

of k − 1 users such that the perimeter of the MBR including these users

and the issuer is minimal. The idea of optimalUnsafe is to search the best

perimeter of the MBRs for each set containing the issuer and other k − 1

users. Hence, the complexity of the algorithm is exponential in the number

of users p; However, we developed several optimization techniques that make

the algorithm in most cases computable in time linear in the size of p, and

exponential in the size of k. This makes it possible to compute the optimal

perimeter, as a reference value for the evaluation of the defense algorithms,

for quite large values of p and practically relevant values of k. The algorithm

we implemented computes, among all possible anonymity sets, the one hav-

ing the smallest perimeter of the MBR. The choice of computing the optimal

perimeter, instead of the optimal area, is driven by the fact that if optimal

area is computed then the algorithm often returns a set of users having the

same x value (or y value) but that are possibly far from each other.

3.4.2 Evaluation of the quality of service

Figure 3.5(a) and 3.5(b) show the average perimeter and area, respectively,

of the region returned by four defense algorithms against UAttCst for differ-

ent values of k. The principle behind the nnASR algorithm may induce the

reader to think that the resulting region is minimal. Our empirical results

show that this is not the case. On average, nnASR returns regions having a

perimeter 25% larger than the one of the region returned by optimalUnsafe.

We also computed the average number of times in which nnASR returns

the same result as optimalUnsafe. We noticed that this value rapidly de-

creases with the growing of k. For example, with k = 4 and p = 500, 000,

nnASR returns the region with the minimal perimeter in about 26% of the

cases, while the percentage drops below 2% for k = 20 and the same number

of users.
5The term “unsafe” in the name optimalUnsafe refers to the fact that the algorithm is

a defense only against UAttCst and not against AttCst+g .

47

 0

 100

 200

 300

 400

 4 6 8 10 12 14 16 18 20

av
g

pe
rim

et
er

 (
m

)

k

intervalCloaking
casper
nnASR

optimalUnsafe

(a) perimeter

 0

 2000

 4000

 6000

 8000

 4 6 8 10 12 14 16 18 20

av
g

ar
ea

 (
m

^2
)

k

intervalCloaking
casper
nnASR

optimalUnsafe

(b) area

Figure 3.5: Average size of the generalized region with p = 500, 000 for the

defense algorithms against UAttCst in the non-uniform distribution.

Figures 3.6(a) and 3.6(b) consider three defense algorithms against AttCst+g

and one defense algorithm against UAttCst , to compare with. They show

the average area of the regions returned by these algorithms for different

values of k, in both uniform and non-uniform cases. First, we can notice

that, in the non-uniform distribution, the algorithms perform better. This

is due to the fact that users are located in the streets only and therefore

they tend to be closer to each other. We can also observe that in both

cases the grid algorithm performs significantly better than the other two

defense algorithms against AttCst+g . Comparing grid and nnASR we can

notice that, in the uniform distribution, they perform similarly for values of

k up to 45, while for higher values of this parameter, grid performs slightly

better. On the contrary, in the non-uniform case, nnASR performs signif-

icantly better for every value of k. Indeed, in the non-uniform case it is

possible that projecting the positions of a given set of users on one of the

axis, some successive values on the axis happen to be far apart from each

other. Due to its partitioning strategy, grid may have to include the cor-

responding positions in the same block, while nnASR, for the same set of

users may be able to include only positions with values on that axis close

to each other. This clearly does not happen in the uniform case, since the

48

 0

 10000

 20000

 30000

 40000

 20 40 60 80 100

av
g

ar
ea

 (
m

^2
)

k

hilbASR
dichotomicPoints

grid
nnASR

(a) uniform distribution

 0

 10000

 20000

 30000

 40000

 20 40 60 80 100

av
g

ar
ea

 (
m

^2
)

k

hilbASR
dichotomicPoints

grid
nnASR

(b) non-uniform distribution

Figure 3.6: Average area with p = 500, 000 for the defense algorithms against

AttCst+g .

values in the projection will always have a similar distance. Finally, we

can observe that the growth of the size of the average area obtained using

hilbASR, grid and nnASR is almost linear in k, while the growth obtained

using dichotomicPoints is constant for certain intervals of k, with changes

of values for some values of k. This is due to the fact that dichotomicPoints

partitions the number of points until it finds a set containing less than k

users. The number of iterations is given by:
⌈
log(p

k)
⌉
. Therefore, there are

executions of the algorithm with different values of k that iterate the same

number of times, hence computing, at the last iteration, the same number

of users. Consequently, these executions return regions with similar area.

In order to better illustrate this behavior, we show in Figure 3.7 the

average area of the MBR for high values of k (up to 400). It can be noticed

that hilbASR does not scale well for high values of k. Though this values

of k may be assumed too high for some applications, in Chapter 4 we show

how, in the dynamic case, it is necessary to compute some of the algorithms

presented in this section for high values of k.

In Figure 3.8 we fix the value of k to 40 and we show the average area

of the generalized region computed by the four algorithms with respect to

the considered number of users. As expected, the average area decreases for

49

 0

 100000

 200000

 300000

 400000

 20 80 140 200 260 320 380
av

g
ar

ea
 (

m
^2

)

k

hilbASR
dichotomicPoints

grid
nnASR

Figure 3.7: Average area with p = 500, 000 for the non-uniform distribution

and for large values of k.

 0

 20000

 40000

 60000

 100000 200000 300000 400000 500000

av
g

ar
ea

 (
m

^2
)

p

hilbASR
dichotomicPoints

grid
nnASR

Figure 3.8: Average area with k = 40 for the non-uniform distribution.

a growing value of p. A slightly different behavior can be noticed for the

dichotomicPoints algorithm: since, as we observed before, the number of

divisions performed by dichotomicPoints is equal to
⌈
log(p

k)
⌉
, if we increase

the value of p, keeping the same number of divisions, we will have larger

anonymity sets, hence larger areas of their MBR.

In Figure 3.9 we show the variance of the area of the MBR of the gener-

alized regions computed by the dichotomicPoints, hilbASR, grid and nnASR

algorithms. The growth of the hilbASR variance is not regular. We have

observed that, in some cases, the execution of the hilbASR algorithm in the

non-uniform distribution can result in an area that is up to 30 times larger

50

 0

 60

 120

 180

 20 40 60 80 100

va
ria

nc
e

(x
 1

0^
7)

k

hilbASR
dichotomicPoints

grid
nnASR

Figure 3.9: Variance of the algorithms with p = 500, 000 for the non-uniform

distribution.

than the average one. On the other hand, in most of the cases the algo-

rithm generates areas smaller than the average one. The dichotomicPoints

algorithm has a regular but still high variance, while grid algorithm has

a smaller variance. As expected, the nnASR algorithm has a much more

regular and a definitely better variance.

3.4.3 Performance evaluation

Figures 3.10(a) and 3.10(b) show the average computation time of the al-

gorithms nnASR, hilbASR and grid. In the former figure, the value of k

is fixed to 40 and the value of p varies from a minimum of 100, 000 to a

maximum of 500, 000. In the latter, p is fixed to 500, 000 and k varies from

5 to 100. The results for the dichotomicPoints are not reported here, since

this algorithm has a computation time about 50 times higher with respect

to the other algorithm reported in the two figures. Indeed, for k = 40 and

p = 500, 000 the computation time of dichotomicPoints is about half a sec-

ond. We can notice that the computation time of the nnASR algorithm is

about one millisecond and we did not measure significant variation in this

value for different values of k of p. The hilbASR and grid algorithms have

similar computation time. As expected from the complexity analysis, the

51

 0

 5

 10

 15

 20

 100000 200000 300000 400000 500000

av
g

co
m

pu
ta

tio
n

tim
e

(m
s)

p

hilbASR
grid

nnASR

(a) k = 40, varying p

 0

 5

 10

 15

 20

 25

 20 40 60 80 100

co
m

pu
ta

tio
n

tim
e

(m
s)

k

hilbASR
grid

nnASR

(b) p = 500, 000, varying k

Figure 3.10: Average computation time for the non-uniform distribution.

computational time of both algorithms is affected by the number of users.

On the contrary, we can observe that the computational time of hilbASR is

not affected by the value of k while the computational time of grid increases

linearly with the value of k. Again, this experimental finding is consistent

with the worst case time complexity analysis of the two algorithms.

52

Chapter 4

Techniques to enforce

anonymity in the dynamic

case

4.1 Requests’s linking

In the dynamic case, the attacker is able to understand that a set of requests

is issued by the same user. We say that a set of requests is linked to a request

r′, if in a given context it is possible for an attacker to understand that all

the requests in the set, including r′, are issued by the same user. The set of

requests that are linked to a request is called a trace.

The ability of the attacker to link requests is modeled as part of the

context. Indeed a context C specifies how the attacker can compute the

linking function LC that associates, to each generalized request r′, the set

LC(r′) of all the requests linked to r′ under C. When a context C provides

no information about how to compute the linking function, we assume that

requests cannot be linked. This model makes it possible to provide a formal

characterization of the intuitive notion of static and dynamic cases we used

so far. Indeed, in the static case, each generalized request can be linked with

no other requests but itself.

53

Definition 15 Given a context C, we say that C is a context in the static

case if for each generalized request r′ , LC(r′) = {r′}. Otherwise we say that

C is a context in the dynamic case.

In general, the combination of data in different fields of LBS requests

can lead an attacker to link a set of requests to a specific one. Consequently,

different contexts can be defined to specify how the attacker can trace user’s

requests. However, in the following of this dissertation we concentrate on

the context Cpid in which the attacker is able to link each generalized request

with the requests issued with the same pseudo-identifier (pid). The reasons

for this choice are:

• Service personalization is recognized as an important characteristic in

internet services [31]. We argue that service personalization is even

more important in location based services. In order to implement ser-

vice personalization, SPs require a pid to be specified in each request.

Indeed, these SPSS store a user profile that is explicitly provided by

the user and/or derived by the SP. The pid is required to associate the

issuer of a request to the correct user profile.

• The details on how to compute linking using spatio-temporal informa-

tion (see, e.g., [25]) or service specific information are out of the scope

of this dissertation. In context Cpid it is trivial to compute the linking

function and to perform the unlink operation i.e., to make a request

not linkable to any previous one. Indeed, a request is linked with all

the requests already issued with the same pid and the LTS can unlink

a request by using a pid that was never used in any previous request.

• Context Cpid can be easily modified to model the most conservative

case i.e., a generalized request r′ can be linked with the set of all

requests issued by issuer(r′). Indeed, if we assume that the LTS uses

a single pid for each user (and cannot change it), then each request

can be linked with all the requests issued by the same user.

54

Formally, in context Cpid the following linking function can be defined:

Definition 16 Let Cpid be the context in which the attacker knows that

each pseudo-identifier is used by at most one user. In context Cpid, for

each generalized request r′, the attacker can compute the following linking

function:

LCpid
(r′) =

{r′} if r′.IDdata = null

{r′′ ∈ R′|r′′.IDdata = r′.IDdata} otherwise

Note that, in context Cpid the attacker has no “re-identification” abil-

ities and hence there are no attacks that he can perform to violate users’

anonymity. However, when the knowledge of Cpid is used in combination

with the knowledge available in other contexts it allows the attacker to per-

form attacks that are much more likely to identify the issuer of the request

than the corresponding ones in the static case.

An important aspect of the Cpid context is that the unlinking operation

(i.e., the change of the pid) decreases the quality of service because it pre-

vents the SP from providing a personalized service. Therefore, unlinking

should only be used when the generalization (without unlinking) would pro-

duce a generalized region larger than a given threshold Smax. Intuitively,

Smax is a parameter that represents the maximum size of the generalized

region above which the service becomes meaningless and cannot be provided.

4.2 Context Cst+pid: a model for spatio-temporal

anonymity with linking

4.2.1 Context definition

In this section we consider context Cst+pid in which the attacker knows the

location of each user in each time instant and is able to link requests issued

with the same pid. In this context, given a trace of requests, the set of

possible issuers is given by the users that can have possibly issued all the

requests in the trace. In other words, the anonymity set of each generalized

55

request r′ is given by the set of users i such that, for each request r′′ linked

with r′, the location of i at time r′′.Tdata is inside r′′.Sdata. Definition 17

formalizes this concept.

Definition 17 Let Cst+pid be the context in which the attacker has the

knowledge and reasoning abilities of contexts Cst and Cpid. For each gener-

alized request r′ the anonymity set based on context Cst+pid is:

ASCst+pid
(r′) =

⋂

r′′∈LCpid
(r′)

ASCst(r
′′)

Note that Definition 17 is a proper extension of Definition 8. Indeed, if

no linking is possible (e.g., if the LTS always performs unlinking), then for

each generalized request r′, LCpid
(r′) = {r′}. Therefore:

ASCst+pid
(r′) =

⋂

r′′∈LCpid
(r′)

ASCst(r
′′) = ASCst(r

′)

4.2.2 Greedy-nnASR Generalization algorithm

The first algorithm we present is a greedy algorithm based on two main

ideas:

• the same anonymity set AS should be maintained for the requests in

the trace;

• the anonymity set is computed with the nnASR algorithm (see Section

3.1.2) that is a defense algorithm with respect to UAttCst .

Algorithm 5 takes in input the value of the spatial threshold Smax in

addition to the original request r, the re-identification threshold h and the

set of previous requests τ . The algorithm first checks if r is the first request

issued by issuer(r). If so, a request generalized with the nnASR algorithm

is returned. Otherwise, Greedy-nnASR computes the anonymity set AS of

the first request issued with the last used pid and then assigns to the variable

A the value of the minimum bounding rectangle that contains the locations

of the users in AS at time r′.Tdata. Finally, if A has area smaller than

56

Smax then the request with A as generalized region is returned. Otherwise,

unlinking is required and the generalized request is computed through the

nnASR algorithm.

Algorithm 5 Greedy-nnASR

Input: an original request r, a value h ∈ (0, 1], the set τ of generalized
requests issued by issuer(r), a value Smax.
Output: a generalized request that is safe against UAttCst+pid

with re-
identification threshold h.
Method:
1: if (τ = ∅) then
2: return nnASR(r, h)
3: else
4: r′′ = the last request in temporal order in τ
5: p = r′′.IDdata {the pid currently in use}
6: r′′′ = the first request in temporal order in τ s.t. IDdata = p
7: AS = ASCst(r′′′) {the anonymity set of r′′′}
8: A = MBR(AS, r.Tdata)
9: if (Area(A) ≤ Smax) then

10: return finalizeGeneralization(r,A)
11: else
12: perform unlinking
13: return nnASR(r, h)
14: end if
15: end if

Intuitively, the idea of Greedy-nnASR is that, if a new pid is used (at

the first request or after unlinking), the generalized request is computed with

the generalization algorithm nnASR that was designed for the static case.

Otherwise, the generalized region is computed as the area that contains the

current locations of the users in the anonymity set of the first request in the

trace. In practice, the algorithm computes an anonymity set for the first

requests and then keep the same anonymity set as long as possible, until

unlinking is required because the area that include the current locations of

the users is larger than Smax.

Intuitively, the correctness of the Greedy-nnASR algorithm derives from

the fact that the first request in a trace is safe, since it is computed by

a defense function against UAttCst and the following requests in the trace

57

are also safe because their generalized areas cover the locations of the same

users in the anonymity set of the first request in the trace.

Theorem 6 Greedy-nnASR is a defense algorithm against UAttCst+pid
.

For what concerns the complexity of the Greedy-nnASR algorithm, it

is equal to the time required to compute the minimum bounding rectan-

gle of the users in the anonymity set plus the time required to compute

nnASR. In our implementation, we did not use any order to store the users

in the anonymity set, hence the minimum bounding rectangle can be com-

puted in linear time with respect to the cardinality of the anonymity set

that is d1/he1. On the other hand, nnASR can be computed in logarithmic

expected time with respect to the number of users. Therefore, in theory,

the algorithm can be computed in time linear in 1/h. However, in prac-

tice |I| >> 1/h, and hence the time required to compute the algorithm is

dominated by the time required to compute the nnASR.

4.2.3 Square Generalization algorithm

We say that Greedy-nnASR is a greedy algorithm because it provides good

performace, in terms of the size of the generalized region, for the first request

in a trace while, for the following requests in the trace, the size of the

generalized region rapidly increases because the users in the anonymity set

are likely to move in different directions. In Section 4.5 we show that, in our

experimental setting, after few requests, the area of the generalized region

is larger than Smax and hence unlinking is required.

In this section we present the Square generalization algorithm that tack-

les this problem by using a variable anonymity set. The intuition is that, for

the first request in the trace, the Square algorithm computes an anonymity

set that is larger than the one strictly required to generalize that request.
1MBR can be computed in constant time if the users are ordered according to both

axis; However, to keep the set of users ordered implies an overhead in the management of

the data structure each time a user moves.

58

When successive requests arrive, the anonymity set is computed as a sub-

set of the anonymity set of the previous request in the trace. When the

anonymity set contains less than 1/h users, unlinking is performed and a

new anonymity set is computed.

Algorithm 6 first checks if the input request r is the first request issued

by issuer(r). If so, the set I ′ of users is set to I. Otherwise, I ′ is set to the

anonymity set of the last generalized request issued by issuer(r). Then, the

algorithm selects the set AS of users of I ′, who are called candidate pseu-

doissuers, whose locations are in the square that is centered in the issuer’s

location and has area equal to Smax. (In fact, each square mentioned in this

subsection is of size Smax.) A user, called pseudoissuer, is randomly chosen

from this set of candidate pseudoissuers. The variable AS is reassigned to

the set of users of I ′ whose location is in the square centered in the location

of the pseudoissuer. If AS has cardinality not smaller than 1/h, then it is

safe to return a generalized request with a generalized region corresponding

to the MBR of the locations of the users in AS at time t. Otherwise, un-

linking is required. First, AS is reassigned to the set of users of I whose

location is in the square centered in the location of the pseudoissuer. If now

the cardinality of AS is not smaller than 1/h, then the MBR of the loca-

tions of the users in AS at time t can be computed as generalized region and

the generalized request can be returned after that unlinking is performed.

Otherwise, if the cardinality of AS is still smaller than 1/h, then the Square

algorithm is able to compute a safe request and therefore rnull is returned.

The correctness of the Square algorithm relies on the fact that, when the

algorithm is not capable of computing a safe request, then it suppresses the

request. However, note that requests are suppressed only when a general-

ization is not possible even after the unlinking is performed. This is a very

unlikely case, as we shall see in Section 4.5.

Theorem 7 Square is a defense algorithm against UAttCst+pid
.

For what concerns the computational complexity of the Square algo-

rithm, the only non constant operation is the computation of the set of

59

Algorithm 6 Square

Input: an original request r, a value h ∈ (0, 1], the set τ of generalized
requests issued by issuer(r), a value Smax.
Output: a generalized request that is safe against UAttCst+pid

with re-
identification threshold h.
Method:
1: if (τ = ∅) then
2: I ′ = I
3: else
4: r′′ = the last request in temporal order in τ
5: I ′ = ASCst+pid

(r′′)
6: end if
7: t = r.Tdata
8: s = the square with edges parallel to the axis, with area equal to Smax,

that is centered in the position of the issuer of r at time t
9: AS = the set of users in I ′ whose location at time t is inside s

10: pi = a random user in AS {pseudo issuer}
11: s = the square with edges parallel to the axis, with area equal to Smax,

centered in the position of pi at time t
12: AS = the set of users in I ′ whose location is inside s
13: if (|AS| ≥ 1/h) then
14: return finalizeGeneralization(r,MBR(AS, t))
15: else
16: AS = the set of users in I whose location is inside s
17: if (|AS| ≥ 1/h) then
18: perform unlinking
19: return finalizeGeneralization(r,MBR(AS, t))
20: else
21: return rnull

22: end if
23: end if

users of I ′ whose location is inside s. In the worst case, I ′ is equal to I and

all the users are located in s, hence this operation has complexity O(|I|).
However, in practical cases, since Area(s) << Area(Atot), the cardinality

of the set of users located in s is much smaller than |I|. Consequently, if

an R-tree is used to store users’ location, the time required to compute this

operation is logarithmic in |I|.

60

4.3 Context Cst+g+pid: a model for spatio-temporal

anonymity with linking when the generaliza-

tion function is known to the attacker

4.3.1 Context definition

In this section we consider context Cst+g+pid, the combination of context

Cst+g and Cpid. In this context, the probability that a user i issues a trace

of requests is given by the probability that there exists a set of potential

original requests issued by i that is generalized to that trace. Formally, we

can define the following attack

Definition 18 Let Cst+g+pid be the context in which the attacker has the

knowledge and reasoning abilities of context Cst+g and of context Cpid.

The attack based on context Cst+g+pid is:

AttCst+g+pid
(r′, i) =

∏
∀r′′∈LCpid

(r′) P [g(r′′i , τ r′
r′′) = r′′]

∑
j∈I

∏
∀r′′∈LCpid

(r′) P [g(r′′j , τ r′
r′′) = r′′]

(4.1)

where, for each i ∈ I and each r′′ ∈ R′, r′′i = o(r′′, i, loci(r′′.Tdata)) and τ r′
r′′

is the set of requests of LCpid
(r′) issued before r′′.

Definition 18 may appear involved, but the intuition behind it is actually

simple. The numerator of Equation (4.1) is the absolute probability that i

issues the trace LCpid
(r′). Indeed, this probability is given by the probability

that all the original requests “derived” by the requests in LCpid
(r′) through

the o() function are generalized to the requests LCpid
(r′). Formally, this

probability is: P∀r′′∈LCpid
(r′)[g(r′′i , τ r′′

i) = r′′]. Since the probabilities, for

each r′′ ∈ LCpid
(r′) are all independent, they are all verified with the same

probability of their product, i.e., the numerator of Equation (4.1). The

denominator of Equation (4.1) simply normalizes the absolute probability

to 1, among the users in I.

Now, let us consider the particular case of a deterministic generalization

function. In this case,
∏
∀r′′∈LCpid

(r′) P [g(r′′i , τ r′
r′′) = r′′] is equal to 1 if the

61

generalization of each original request r′′i with previous requests τ r′
r′′ is equal

to r′′, otherwise it is equal to 0. Hence, in this case, the attack is uniform.

Indeed, a user i is not a possible issuer if there exists a request r′′ in LCpid
(r′)

such that g(r′′i , τ r′
r′′) 6= r′′. Otherwise, i is a possible issuer and the number

of possible issuers (each one with the same probability of being the real

issuer) is given by the number of users j such that, for all r′′ ∈ LCpid
(r′),

g(r′′j , τ r′
r′′) = r′′.

Theorem 8 If g is a deterministic generalization function then AttCst+g+pid

is a uniform attack characterized by the anonymity set

ASCst+g+pid
(r′) = {i ∈ I|∀r′′ ∈ LCpid

(r′) g(r′′i , τ r′
r′′) = r′′}

where, for each i ∈ I and each r′′ ∈ R′, r′′i = o(r′′, i, loci(r′′.Tdata)) and τ r′
r′′

is the set of requests of LCpid
(r′) issued before r′′.

4.3.2 Provident-hilb generalization algorithm

In this section we present a defense algorithm against Attcst+g+pid
called

ProvidentHilb (Algorithm 7). Similarly to the Square algorithm, ProvidentHilb

computes, for the first request in a trace, an anonymity set that is larger

than the one strictly required to generalize that request. When successive

requests arrive, the anonymity set is computed as a subset of the anonymity

set of the previous request in the trace.

The ProvidentHilb algorithm differs from the Square algorithm in the

computation of the anonymity set. Given r the original request given in

input, the ProvidentHilb algorithm computes the anonymity set as a subset

of the set I ′ that is initialized to the anonymity set of the previous request

issued by issuer(r). If r is the first request issued by issuer(r), I ′ is ini-

tialized to I. The set I ′ is then partitioned into blocks using the HilbPart

procedure. Unlinking is required if any of the blocks in the partition con-

tains a set of users whose locations at time r.Tdata is bounded by a minimal

rectangle with area larger than Smax. In this case, HilbPart function is ex-

62

ecuted again to partition the set I of all users. Finally, the anonymity set

computed as the block that contains the issuer of r.

Algorithm 7 ProvidentHilb

Input: an original request r, a value h ∈ (0, 1], the set τ of generalized
requests issued by issuer(r), a value Smax.
Output: a generalized request that is safe against UAttCst+g+pid

with re-
identification threshold h.
Method:
1: if (τ = ∅) then
2: I ′ = I
3: else
4: r′′ = the last request in temporal order of τ
5: I ′ = ASCst+g+pid

(r′′) {The anonymity set of r′′}
6: end if
7: t = r.Tdata
8: part = HilbPart(I ′, h, Smax, t)
9: if (∃B ∈ part s.t. Area(MBR(B, t)) > Smax) then

10: perform unlink
11: part = HilbPart(I, h, Smax, t)
12: end if
13: B is the block of part s.t. issuer(r) ∈ B
14: return finalizeGeneralization(r,MBR(B, t))

The computation of HilbPart, shown in Algorithm 8, is inspired by

the HilbASR algorithm [29]. Users are totally ordered according to their

locations (at time r.Tdata) along the Hilbert space filling curve. Then, the

blocks are constructed considering the users one by one (Lines 4 to 11). The

idea is to include in each block as many users as possible until the area of

the minimum bounding rectangle that covers the locations of the users in

the block is smaller than Smax. However, each block should also contain at

least k users (with k = d1/he) and hence a user is always added to a block

that contains less than k users (Line 6).

The computation described above can lead to the case in which the last

block has less than k users. To ensure that each block has at least cardinality

k, the algorithm takes the missing users from previous block (Lines 14 to

27). In more details, the blocks are processed one by one from the last

63

one to the first one. At each iteration, the current block B takes, from its

predecessor, k − |B| users, i.e., the number of users that are required by B

to have cardinality equal to k (Lines 23 to 26). Iteration terminates when

the first block is reached or when the current block has more than k users,

since all its previous blocks are guaranteed to contain at least k users. If the

first block is reached, then the algorithm is trying to use too many blocks

(|part| · k > |I ′|). In this case, the first block is deleted and its users are

added to the second one.

Theorem 9 proves that ProvidentHilb is a defense algorithm against

AttCst+g+pid
.

Theorem 9 ProvidentHilb is a defense algorithm against AttCst+g+pid
.

4.4 Context Cast+g+pid: modeling approximate knowl-

edge of users’ locations with linking

4.4.1 Context definition

In this section we present the extension of context Cast+g to the dynamic

case Cast+g+pid. Analogously to how the attacks with exact knowledge in

the dynamic case extends the corresponding attacks in the static case, the

attack AttCast+g+pid
(r′, i) can be simply defined as the product, for each

request linked with r′ of the attacks in the static case.

However, in the dynamic case, we want to model the case in which the

possible user locations function can change during time. The intuition is

that, if a user has a given probability of being located in a certain region

during, for example, working hours, the same user may have different prob-

ability of being located in the same region during non-working hours.

To formally model this situation, we define a temporal bottom granularity.

Temporal granularities and their relationships have been extensively studied,

among others, in [11, 42, 9]. In the following we report the first definition

of temporal granularity provided in [11]

64

Algorithm 8 HilbPart

Input: a set I ′ of users, a value h ∈ (0, 1], a value Smax, a time instant t
Output: a partition part of I ′ such that each block of part contains at least
1/h users
Method:
1: k = d1/he
2: H = users of I ′ ordered according to Hilbert index
3: part = ∅ {List of blocks}
4: B = ∅ {Current bucket}
5: for all (u ∈ H) do
6: if (Area(MBR(B ∪ {u}, t)) ≤ Smax OR |B| < k) then
7: B = B ∪ {u}
8: else
9: part = part ∪ {B}

10: B = {u}
11: end if
12: end for
13: part = part ∪ {B}
14: for all (B ∈ part from last to first) do
15: if (|B| ≥ k) then break
16: if (B is the first block in part) then
17: Bsecond = the second block in part
18: Bsecond = Bsecond ∪B
19: part = part \ {B}
20: break
21: else
22: Bprev is the block of part preceding B
23: U = last, according to Hilbert order, k − |B| users in Bprev

24: B = B ∪ U
25: Bprev = Bprev \ U
26: end if
27: end for
28: return part

Definition 19 A temporal granularity is a mapping G from the integers

(the index set) to subsets of the time domain such that: (1) if i < j and

G(i), G(j) are nonempty, then each element of G(i) is less than all elements

of G(j), and (2) if i < k < j and G(i), G(j) are nonempty, then G(k) is

nonempty.

Intuitively, a temporal granularity G associates to each integer t a (pos-

65

sibly empty) subset of the time domain such that (1) the indexes order is

the same as the time domain order and (2) the subset of indexes that maps

to nonempty subsets of the time domain is contiguous.

Several relationships between temporal granularities are defined in [11].

In the following, we use the groups into relationship formalized in Defini-

tion 20.

Definition 20 A temporal granularity G groups into a temporal granularity

H, denoted by G / H, if for each index j, there exists a possibly infinite

subset S of the index set such that H(j) =
⋃

i∈S G(i).

Based on the definition of the groups into relationship, we define the

temporal bottom granularity ⊥T as the granularity that groups into all the

other granularities in the system. Intuitively, this implies that each granule

of each granularity in the system can be specified as the union of a set of

granules of the bottom granularity.

Once the temporal bottom granularity is defined, we can extend Defini-

tion 11 to consider the temporal dimension.

Definition 21 Given a set of users I, the bottom spatial granularity ⊥S

and the bottom temporal granularity ⊥T , the possible user locations function

pul : I × ⊥S × Z → [0, 1] is such that for each user i ∈ I and each t ∈ Z,
∑

s∈⊥S
pul(i, s, t) = 1.

In Definition 21, the third paramether of the pul function represents the

index of the granule of the temporal bottom granularity in which the distri-

bution of user locations is considered.

Similarly to the static case, the definition of the possible user locations

function can be extended to take an area A as paramether:

∀i ∈ I, t ∈ Z, pul(i, A, t) =
∑

s∈A

pul(i, s, t)

The probability that a single user located in an area A has identity i,

defined as p(i, A) in Section 3.3.1, can also be easily extended to consider

66

the temporal domain. Formally, given enu(A, t) =
∑

i∈I pul(i, A, t),

p(i, A, t) =

0 if enu(A, t) = 0
pul(i,A,t)
enu(A,t) otherwise

We can now define the attack based on context Cast+g+pid:

Definition 22 Let Cast+g+pid be the context in which the attacker has knowl-

edge and reasoning abilities of contexts Cast+g and Cpid. For each r′ ∈ R′

and i ∈ I, the attack AttCast+g+pid
(r′, i) is:

∏
r′′∈Lpid(r′)

∑
s∈r′′.Sdata(p(i, s, r′′.Tdata) · P [g(o(r′′, i, s)) = r′′])

∑
j∈I

∏
r′′∈Lpid(r′)

∑
s∈r′′.Sdata(p(j, s, r′′.Tdata) · P [g(o(r′′, j, s)) = r′′])

Intuitively, AttCast+g+pid
(r′, i) is the product, for each request linked with

r′, of the attacks in the static case, normalized to 1 for the users in I.

However, the notation of AttCast+g cannot be used since, this static attack,

defined in Section 3.3.1, uses a definition of the p function that is independent

from the time instant in which the request is issued.

4.4.2 A defense function

Algorithm 9 shows a generalization algorithm that extends algorithm Par-

titionArea presented in Section 3.3.2. The idea is to iteratively partition a

2D-region A that is initialized to Atot. At each iteration, a partitioning of

A is computed. For each block B, if any user could be identified, using the

combination of contexts Cast and Cpid, as the issuer of a request having B as

the generalized location, with likelihood greater than h, then the algorithm

terminates returning a generalized request that has A as generalized loca-

tion. Otherwise, iteration continues and the value of A is set to the block

that contains the location of the issuer.

The most involved part of the algorithm consists in checking if a user

could be identified as the issuer of a request having B as generalized location.

Intuitively, under context Cast+pid (i.e., the combination of Cast and pid),

the probability of a user being the issuer of a request from an area B is

given by the probability, normalized to 1 among the users in I, of the user

67

being the issuer of the previous requests in the trace times the probability

of the user being the issuer of a request from the area B. Lines 6 to 8 of

Algorithm 9 computes the maximum probability among all the users and all

the blocks of the partitions of A.

Algorithm 9 PartitionAreaDyn
Input: an original request r, a value h ∈ (0, 1], the set τ of generalized
requests issued by issuer(r), a value Smax.
Output: a generalized request that is safe against UAttCast+g+pid

with re-
identification threshold h.
Method:
1: A = Atot

2: continue = true
3: i = issuer(r)
4: t = r.Tdata
5: while (continue) do
6: par = partition(A)
7: max = maxj∈I,B∈par

(∏
r′′∈τ p(j, r′′.Sdata, r′′.Tdata)

) · p(j, B, t)
8: sum =

∑
j∈I

(∏
r′′∈τ p(j, r′′.Sdata, r′′.Tdata)

) · p(j, B, t)
9: if (max/sum > h) then

10: continue =false
11: else
12: A = the block B of par s.t. r.Sdata ∈ B
13: end if
14: end while
15: if Area(B) > Smax then
16: return PartitionArea(r, h)
17: else
18: return finalizeGeneralization(r,A)
19: end if

We conjecture that PartitionAreaDyn is a defense function. The idea is

similar to the idea of PartitionArea: if r′ is the result of PartitionAreaDyn(r, h, τ, Smax),

the generalization of any request issued in r′.Sdata with the same h, τ and

Smax parameters is r′.

Conjecture 2 PartitionAreaDyn is a defense algorithm against AttCast+g+pid
.

68

4.4.3 Specification of the pul function in the dynamic case

In Section 3.3.3 we show how to specify the possible user location function in

the static case. In this section we extend the technique to the dynamic case.

The idea is that, if the ex function were defined for each time granule of

the bottom temporal granularity, then the corresponding pul can be defined

with a straightforward extension of Definition 14.

However, it is not reasonable to assume that an explicit knowledge func-

tion is defined for each granule of the bottom granularity. Instead, we assume

that the explicit knowledge function is defined for some temporal granular-

ities. These granularities are such that none of their granules overlap and

the union of their granules covers the entire time domain.

In the following, we indicate with exG the explicit knowledge function

associated to the granularity G in G. The pul function in a given time

instant t can then be defined from the exG function such that there exists a

granule of G that covers ⊥T (t).

Definition 23 Let G be a set of temporal granularities such that: 1) for

each distinct pairs of granularities G1, G2 ∈ G and for each pair of integers

i, j ∈ Z, G1(i) ∩G2(j) = ∅; 2)
⋃

G∈G
⋃

i∈Z G(i) =
⋃

i∈Z⊥T (i).

Moreover, let E be a set that contains an explicit knowledge functions

exG for each G ∈ G.

Then, for all s ∈ ⊥S, i ∈ I, t ∈ Z, the possible user location function

pul(i, s, t) corresponding to E is:

pul(i, s, t) =

exG(i, A) · Area(s)
Area(A) if ∃A ∈ defi s.t. s ∈ A

(1−∑
A∈defi

exG(i, A)) · Area(s)
Area(undefi)

otherwise

where G is the granularity in G such that ∃j ∈ Z with G(j) ⊇ ⊥T (t);

defi = {A ⊆ Atot|exG(i, A) is defined}; and undefi = Atot \
⋃

A∈defi
A.

4.5 Empirical evaluation of generalization algorithms

In this section we show the results of the experiments we performed for

the defense algorithms in contexts Cst+pid and Cst+g+pid. The aim of the

69

experiments is to evaluate, for each of the proposed defense algorithms, the

average length of the traces i.e., the average number of requests that can be

issued before unlinking is required. We leave as a future work the empirical

evaluation of the PartitionAreaDyn defense algorithm.

4.5.1 Experimental setting

Similarly to the experiments in the static case, the tests presented in this

section were performed using artificial data. Users’ locations were generated

by the moving object generator developed by Brinkhoff [16] that was set to

create 500, 000 user’s traces in the city of San Francisco. The total area of

the map is about 100 km2. The resulting average density of users for km2

is about 5, 000. All users start moving at time instant 1 from a randomly

chosen location towards a randomly chosen destination. Users communicate

their location every minute. In our tests, users’ movement are monitored

for a period of 40 minutes. When a user reaches her destination, she stops

moving, but carries on providing her location.

Users are equally divided into two groups: pedestrians and cars. The

speed limit for pedestrians is set to 4 km/h, while the speed limit for cars

is 100 km/h. User’s speed may also be limited by the street where the user

is passing by; There are three kinds of streets, with average speed limits

100 km/h (highways), 40 km/h (main roads), 20 km/h (urban streets). Our

tests are performed considering, as issuers, 100 pedestrians and 100 cars,

randomly chosen among the users that do not reach their destination before

the 30th minute. We assume that each of these users issues a request every

minute.

4.5.2 Evaluation of the trace length

In the first set of experiments, we fix the value of k to 10 and evaluate the

average length of the traces for different values of Smax. Three different

values of Smax are chosen: 103 m2, 104 m2 and 105 m2. Intuitively, the first

threshold is for services that require very high precision, since it is close to

70

the average precision provided by common GPS devices; the second is close

to the average precision achievable with triangulation techniques over GSM

cells, and may still be acceptable for many services; the third threshold is

still adequate for some services, like localized news or weather forecasts, but

may also be used for common nearest resource services when filtering of the

answer is provided either by the LTS or on the device itself.

Figure 4.1: Average length of traces with k = 10

Figure 4.1 shows the experimental results. It is easily seen that Square

performs better than the other two algorithms. In particular, Square out-

performs, in terms of trace length, Greedy-nnASR. ProvidentHilb per-

forms similarly to Greedy-nnASR which means that Greedy-nnASR has

poor performances because it is a defense algorithm against AttCst+pid
while

ProvidentHilb is a defense algorithm against AttCst+g+pid
. Comparing the

performance obtained considering cars and pedestrians, we can observe that

requests issued by cars have much shorter traces. This indicates that the

speed of the issuer strongly affects the ability of the generalization functions

to generalize its trace.

In the second set of experiments we fix the value of Smax to 104 and we

compare the average length of traces for different values of k. Analogously to

the first experiment, we can observe that Square allows much longer traces

71

when pedestrians are considered while it provides only slightly better traces

when cars are considered. Again, ProvidentHilb and Greedy-nnASR have

similar performances. As expected, the larger is the value of k, the shorter

are the traces.

Figure 4.2: Average length of traces with Smax = 104

72

Chapter 5

Discussion

5.1 Personalization of the re-identification thresh-

old

In this dissertation we did not consider issues related to the personalization

of the re-identification threshold h. Some approaches (e.g. [22, 39]) explic-

itly allow different users to specify different values of the degree of anonymity

that, as we showed in Section 3.1 is the inverse of the re-identification thresh-

old h. A natural question is if the techniques proposed in this dissertation

can be applied and can be considered safe even in this case. Once again, to

answer this question it is essential to consider which knowledge an attacker

may obtain. If the re-identification threshold h desired by each user at the

time of a request is not assumed to be known by the attacker in contexts

Cst and Cst+g, hence algorithms that are safe for these contexts remain safe

even when the LTS admits different values of h.

However, it may be reasonable to consider contexts in which the at-

tacker may obtain information about h. For example, if the attacker is able

to derive information from different requests, he can exploit data mining

techniques to derive, with a certain likelihood, the value of h required by

each user. This knowledge can then be used to perform new attacks. Since

these attacks are based on contexts different from Cst+g, the defense algo-

73

rithms against AttCst+g presented in this dissertation are not able to provide

protection against this new kind of attacks.

A straightforward solution to extend the defense algorithm against AttCst+g

to these cases is the following: when a request r needs to be generalized with

degree of anonymity h, the anonymity set is computed considering only the

users that can possibly issue a request requiring that degree of anonymity.

Clearly, the solution is viable only if a limited set of h values is available and

a large number of users using each value exists. If this is not the case, more

sophisticated strategies need to be devised to obtain defense algorithms,

and, to our knowledge, this is still an open research issue.

5.2 Shape of the generalized area

In this dissertation we assumed the generalization area to be a rectangle

with edges parallel to the axis. The choice of using this shape as generalized

area is driven by the fact that the SP must be able to efficiently compute the

set of target objects (e.g., points of interests) that are closer to any point of

the generalized area. This kind of query is called range K nearest neighbor1

(RKNN) [28].

To the best of our knowledge, the problem of efficiently computing

RKNN queries was addressed only when the range is an axis parallel rect-

angle [28, 39] or a circonference [29]. In the general case of an arbitrary area,

no efficient algorithm was proposed and therefore no other shape should be

used when performing the generalization. Nevertheless, in this dissertation

we disregarded the circonference as a possible shape for the generalized area.

Actually, most of the defense algorithms we propose can be easily extended

to generate a circonference instead of a rectangle. For example, all the algo-

rithms that first obtain the anonymity set and then compute the minimum

bounding rectangle of the locations of the users, can be modified to compute

the smallest enclosing circle (SEC). We leave as a future work the compar-
1Note that the symbol K used here for range K nearest neighbor queries is different

from the degree of anonymity k.

74

ison of the performance, in terms of the size of the generalized area, of the

algorithm that uses MBR versus the algorithms that uses SEC.

A completely different approach consists in having a generalization func-

tion that, instead of returning a single generalized area, returns a set of

points, each one corresponding to the (potential) location of one or more

users. Then, this set of points can be used in two different ways: the LTS

could send to the SP a request for each point, or the LTS could send a

generalized request in which the location information is the set of points.

The first possibility is analogous to the solution of issuing “fake” requests,

proposed in [30]. In both cases the SP returns the union, for each point p

that generalizes user’s location, of the K nearest neighbor points of interests

closer to p. In this case, the quality of service should be evaluated in terms

of the total number of points of interest returned by the SP. To the best of

our knowledge, this problem has never been specifically addressed and we

leave a detailed study as a future work. However, as a preliminary consider-

ation, we can notice that, in order to limit the number of points of interest

returned by the SP, the points that generalize user’s location should be close

to each other so that most of them share the same K nearest points of in-

terests. Consequently, some of the techniques adopted in this dissertation

can be adapted for this different kind of generalization.

5.3 User friendly specification of temporal granu-

larities

In Section 4.4.3 we showed how temporal granularities can be exploited to

define the explicit knowledge function. Several different granularities can

be used, as, for example: early-morning, lunchtime, working-hours, night-

before-a-working-day.

The problem of representing time granularities has been extensively stud-

ied in the literature. Three main objectives can be identified: a) a sufficiently

expressive formal model for time granularity, b) a convenient way to define

75

new time granularities, and c) efficient reasoning tools over time granular-

ities. In the applicative context we present in this dissertation, the three

objectives above correspond to the definition of a framework for time gran-

ularities that allows the privacy analyst (who is in charge to specify the

possible attacks) to specify all the time granularities that are required to

define the ex function. These granularities should be defined through a user

friendly application and efficient reasoning should be possible, for example

to identify if a granularity covers a certain time instant.

Consider a). In the last decade significant efforts have been made to

provide formal models for the notion of time granularity and to devise al-

gorithms to manage temporal data based on those models. In addition to

logical approaches [40, 19], a framework based on periodic-set representa-

tions has been extensively studied [11], and more recently an approach based

on strings and automata was introduced [49, 15]. In the following of this

section, we consider the last two approaches because they support the ef-

fective computation of basic operations on time granularities. In both cases

the representation of granularities can be considered as a low-level one, with

a rather involved specification in terms of the instants of the time domain.

Consider requirement b) above. Users may have a hard time in defin-

ing granularities in formalisms based on low-level representations, and to

interpret the output of operations. It is unreasonable to ask users (privacy

analysts, in our applicative context) to specify granularities by linear equa-

tions or other mathematical formalisms that operate directly in terms of

instants or of granules of a fixed time granularity. Hence, a second stream

of research investigated more high-level symbolic formalisms providing a set

of algebraic operators to define granularities in a compact and composi-

tional way. The efforts on this task started even before the research on

formal models for granularity [32, 41] and continued as a parallel stream of

research [10, 42, 47, 48].

Finally, let us consider requirement c) above. Several inferencing opera-

tions have been defined on low-level representations, including equivalence,

76

inclusion between granules in different granularities, and even complex infer-

encing services like constraint propagation [12]. Even for simple operations

no general method is available operating directly on the high level repre-

sentation. Indeed, in some cases, the proposed methods cannot exploit the

structure of the expression and require the enumeration of granules, which

may be very inefficient. This is the case, for example, of the granule conver-

sion methods presented by Ning e at. [42]. Moreover, we are not aware of

any method to perform other operations, such as equivalence or intersection

of sets of granules, directly in terms of the high level representation.

In [9] we proposed a unique framework to satisfy the requirements a), b),

and c) identified above, by adding to the existing results a smart and efficient

technique to convert granularity specifications from the high-level algebraic

formalism to the low-level one, for which many more reasoning tools are

available. In the same paper it is also shown how the proposed framework

can be used as a theoretical base to design a user-friendly application for

the specification of time granularities.

77

78

Chapter 6

Related work

6.1 Anonymity in databases

Guaranteeing users’ anonymity is a well-known problem for the release of

data in database tables [44]. In this case, the problem is to protect the

association between the identity of an individual and a tuple containing her

sensitive data; the attributes whose values could possibly be used to restrict

the candidate identities for a given tuple are called quasi-identifiers [21, 14].

The idea first proposed in [44] to formally measure the intuitive notion

of anonymity of a table relies on the concept of k-anonymity. Intuitively,

a table is k anonymous if each tuple is not distinguishable, considering the

values in the quasi-identifiers attributes, from at least other k tuples.

This research area has been very active in the last years. Two main

problems were addressed. First, the specification of efficient algorithms that

render an input table into a k anonymous table and that avoid to generalize

or suppress too many values from the input table [44, 46, 45, 2, 33, 38, 1, 34]

A second research direction aims to extend the notion of k-anonymity in

order to provide privacy protection under different assumptions with respect

to the ones considered in [44] (among others, [50, 35, 14, 51, 17, 52]). In

particular, Xiao et al. [52], consider the case in which the database table

can be re-published several times, each time after the insertion or deletion

79

of some tuples. That paper is particularly interesting with respect to this

dissertation because the problem of the re-publication of data is intrinsic in

the research area of privacy in LBSs. However, the techniques proposed in

that paper cannot be easily applied in the field of LBSs. The main difference,

is that in [52] each user can be identified, in different publications, by a

single combination of values of quasi-identifier attributes. In practice, for a

given user only sensitive data can change in different publications. On the

contrary, in LBSs the location of the user can change at each request and

therefore the values of the quasi identifying attributes can change each time

a request is issued.

6.2 Spatio temporal anonymity

To the best of our knowledge, the problem of privacy in LBSs was first

presented by Gruteser et al. [24]. In that paper, the interval cloaking al-

gorithm, (see Section 3.1.2) is proposed as a spatio-temporal generalization

technique to guarantee the anonymity of a LBS request.

A different algorithm, called CliqueCloak was proposed by Gedik et al.

[22]. The main difference with respect to the interval cloaking algorithm is

that CliqueCloak computes the generalization among the users that actually

issue a request and not among the users that are potential issuers. Indeed,

CliqueCloak collects original requests without forwarding them to the SP

until it is not possible to find a spatio-temporal generalization that includes

at least k pending requests. Then the requests are generalized and forwarded

to the SP. The advantage of the proposed technique is that it allows the

users to personalize the degree of anonymity (see Section 5.1). The problem

of this approach is that, since in general the number of users that issue a

request is much smaller than the number of users that could potentially

issue a request, the spatio-temporal region requires a broader generalization

in order to include other k − 1 requests. Moreover, since the anonymity set

of each request is composed by a set of users, each one being the issuer of

a request, the technique is subject to the homogeneity attack discussed in

80

Section 2.1.1.

Bettini et al. first addressed the problem of anonymity in the dynamic

case [13]. In that paper the authors show that anonymity is not guaranteed

if each request in a trace is generalized using a generalization algorithm for

the static case. Then, the notion of Historical k-anonymity is proposed to

define when a trace of request is anonymous.

In [39] Mokbel et al. propose the Casper generalization algorithm for the

static case that makes it possible to achieve the personalization of the degree

of anonymity. Indeed the algorithm, described in Section 3.1.2, allows the

user to specify a privacy profile composed by two parameters: k and Amin.

The parameter k is the degree of anonymity while Amin is the minimum

size of the generalized region that should be forwarded to the SP. In the

paper it is not clear how a large value of the parameter Amin can enhance

better privacy. Indeed, as we formalized in this dissertation, the probability

that an attacker can re-identify the issuer of a request is not affected by the

size of the generalized region. A different interpretation of the role of Amin

is that a large generalized region can help to prevent the release of private

information. However, in [39] this intuition is not supported by any formal

result.

Beresford in [3] showed a counterexample to the interval cloaking algo-

rithm. The problem, shown in Example 5, was called the “outlier problem”.

The first algorithm that does not suffer the “outlier problem” was proposed

by Kalnis et al [29] and was called HilbASR (see Section 3.2.3). Though

the algorithm solves the “outlier problem”, no proof of its correctness was

provided in [29]. Indeed, the common problem of papers [24, 22, 39, 3, 29] is

the lack of a formal framework to prove the correctness of the generalization

algorithm. This problem was first addressed in [8] and [37] where a prelim-

inary version of the framework presented in this dissertation was proposed.

An extended version of these papers is to be published in [6].

An alternative formal result was independently published by Ghinita et

al. to prove the correctness of the HilbASR algorithm [23] . The paper

81

also presents a framework that makes it possible to compute the HilbASR

algorithm in a distributed manner so that no centralized LTS is required.

The paper presents two issues. First, the knowledge of the attacker is not

modeled and therefore it is not clear how to define the probability that an

attacker can re-identify the issuer (what we called “attack” in this disser-

tation). Second, we are not convinced about the correctness of the formal

result that is used to prove that HilbASR is correct. Actually, as we proved

in this dissertation, HilbASR is a defense algorithm against UAttCst+g ; How-

ever, the proof provided in [23] seems to be incorrect. Intuitively, the formal

result states that a generalization function guarantees anonymity if every

generalized request satisfies a property called reciprocity1. A request r′ sat-

isfies reciprocity if there exists a set AS of users located in r′.Sdata such

that i)|AS| > k (k represents the degree of anonymity), ii) issuer(r′) ∈ AS

and iii) every user u ∈ AS is located in the generalized region computed

considering all the other users in AS as issuers.

In Example 10 we show that even if all the requests returned by a general-

ization function g have the reciprocity property, the attacker could uniquely

identify the issuer of some of the requests.

Example 10 Consider 4 original requests r1, r2, r3 and r4 issued by users

i1, i2, i3, i4, respectively. Let g be a generalization function such that:

• g(r1).Sdata and in g(r2).Sdata include the locations of i1, i2, i3 and

i4;

• g(r3).Sdata includes the location of i1, i2 and i3;

• g(r4).Sdata includes the location of i1, i2, i4.

Now, considering the following sets AS1 = AS2 = AS4 = {i1, i2, i4} and

AS3 = {i1, i2, i3} it can be easily seen that g(r1), g(r2), g(r3) and g(r4) have

the reciprocity property with a value of k equals to 3.
1In the following, we use the notation presented in this dissertation to discuss the

results presented in [23] where a different notation was used.

82

However, according to Definitions 4 and 10, both g(r3) and g(r4) are

not safe with respect to UAttCst+g with threshold 1/3. Indeed, r3 is the only

request that is generalized by g() to a requests whose spatial region includes

the location of i1, i2 and i3 but not the location of i4. Therefore, g(r3) can

be uniquely associated to i3 by an attacker that knows the locations of the 4

users and the generalization function used by the LTS. Similarly, g(r4) can

be uniquely associated to i4.

6.3 Enforcing location privacy

As explained in Section 2, in the single-issuer case a user’s privacy can be

protected by preventing the attacker from identifying the identity or the

private information of that user. In this dissertation we focus on enforcing

anonymity i.e., in preventing the attacker from discovering the identity of

the user.

In [26] a technique is proposed to prevent the attacker from inferring

user’s private information. In this case, the private information is repre-

sented by the sensitive areas i.e., the locations that the user does not want

to be associated with her identity. In the proposed solution, the user spec-

ifies the sensitive areas so that the privacy preserving system can prevent

the attacker from understanding that the user visited a sensitive area. The

straightfarward solution of suppressing all the requests from these areas is

not effective since an attacker could infer that a user visited a sensitive area

only from her request trace outside the sensitive area.

The proposed solution is based on a partition of all the areas (sensitive

or not) in zones, each one including at least k sensitive areas. Then, each

request is suspended until the user crosses a zone boundary. If the user has

not visited a sensitive area, all the pending requests are submitted, otherwise

they are suppressed.

To the best of our knowledge, the proposed solution is the first one that

addresses this kind of problem. However, it is not clear if it is an effective

solution. First, it is debatable if it is appropriate to extend to sensitive areas

83

the concept of k-anonymity. Indeed, if a user specifies some sensitive areas,

she does not want her identity to be associated with any of them; On the

contrary the proposed solution allows an attacker to infer that a user visited

a sensitive area even if it cannot say which one in a set of k. Secondly,

it is not clear if it is acceptable to always postpone the submission of a

request until a user changes a zone. Finally, the way in which the zones are

constructed is critical. Indeed, it seems possible, in some specific cases, that

despite the proposed defense technique, an attacker could infer the exact

sensitive area a user visits.

6.4 Identification and prevention of critical request

traces

An important aspect in the dynamic scenario is how an attacker can identify

a request trace, and how a privacy preserving system can avoid it. Two cases

have been considered.

In [4, 5] LBSs that require a pseudo-id are considered. The proposed

privacy preserving technique is based on the notion of mix-zone introduced

by the authors, and aims to avoid that an attacker traces for a long time the

requests from the same user. The central idea is to change a user’s pseudo-id

each time the user enters in a mix-zone. A mix-zone is analogous to a mix-

node in communication systems [18], and can be intuitively described as a

spatial area such that, if an individual crosses it, then it won’t be possible

to link his future positions (outside the area) with known positions (before

entering the area).

The results can be applied in the dynamic case, but cannot be used to

provide a complete solution to any of the threats described in Section 2.1.

Indeed, the technique aims at reducing the length of the request traces but

does not evaluate if he attacker can obtain the sensitive association. Never-

theless, reducing the request trace length is an important task to facilitate

privacy protection in a dynamic context. Hence, this technique could be

84

very useful as a part of a privacy preserving system.

A different approach to the issue of request traces is to consider LBS that

do not require pseudo-ids. This case is considered in [25] where the authors

experiment to see if it is possible for an attacker to trace a user. A known

algorithm for tracking multiple objects is applied to trace a small number of

users whose locations are frequently collected. The authors conclude that it

is practically possible for an attacker to obtain request traces even if pseudo-

ids are not submitted to the SP. This paper does not propose a solution to

preserve privacy but is a preliminary step in the definition of a technique

that could be used by a privacy preserving system to evaluate if a user is

possibly being traced by an attacker. In the absence of such a solution, a

privacy preserving system should adopt a conservative approach assuming

that a user can always be traced.

6.5 Techniques based on access control

Advanced access control models can be used in the context of LBS services to

specify and enforce privacy policy rules. The rules can define, for example,

the type of data that each service provider can access, the resolution of that

data, and possibly other constraints. With respect to our reference model,

policies can be defined by users as well as by service providers, and can be

enforced by the LTS. Among the efforts in this direction, in [53] a push-

based LBS scenario is considered; users can define authorizations that not

only select which service providers can access location/profile information,

but can also constrain the area and time in which they can send their offers

to the users. The LTS is in charge of enforcing the authorizations. Among

other efforts, the IETF Geopriv working group is proposing a format for

expressing privacy preferences for location information [20].

Access control is an important component of a privacy preserving so-

lution. However, the best results in addressing the privacy threats would

probably be obtained by coupling access control with anonymization tech-

niques discussed in this dissertation.

85

86

Chapter 7

Conclusions and future work

7.1 Summary of the contributions

The main message of this dissertation is that it is not possible to guarantee

the correctness of a privacy-preserving technique if there are no assump-

tions about the external knowledge available to an attacker and about his

reasoning abilities.

To support this idea, we presented a formal framework that formalizes,

among others, the concepts of attack and defense function. The former

makes it possible to specify, for any context C, the best effort to identify the

issuer of a request that can be performed by the attackers having at most

external knowledge and reasoning abilities specified by C. A defense function

is a generalization function that is proved to provide privacy protection

against a given attack. We showed that a generalization function that is a

defense function against an attack based on a certain context may not be a

defense function against an attack based on a different context.

Based on this formalism, we specified the attacks in the two contexts that

were implicitly considered in most of the previous work and we catalogued

the generalization algorithms proposed in the literature according to the

contexts in which they compute a defense function. We also presented a

new generalization algorithm that outperforms the existing generalization

87

algorithms in terms of size of the generalized area and that has similar

performances in terms of computation time.

The formalism we propose can also be used to model the dynamic case

i.e., when the attacker can reason with a trace of requests issued by the same

(anonymous) user. No detailed algorithm was proposed in the literature to

provide a protection in this context. In this dissertation we proposed new

defense algorithms and we empirically compared them showing that, in this

case, the protection requires a much broader generalization than in the static

case. Our empirical results give evidence that, if the attacker knows the

identity of each user in each location (as in the contexts assumed in many

previous works) and is able to link requests issued by the same user, only

few requests can be issued by a user before the generalized area becomes so

large as to make the service useless.

To address this problem, we presented a less conservative context in

which it is possible to model an approximate knowledge of users locations.

Our preliminary results in this direction consist of two generalization al-

gorithms that we conjecture are defense functions. We leave the proof of

correctness of these algorithms and their experimental evaluation as a future

work.

7.2 Future work

Our current research effort is dedicated to the improvement of the results

in the context in which the attacker has approximate knowledge of users

locations. First of all, we need to formally prove the correctness of the al-

gorithms that we conjecture are defense functions. Moreover, we need to

empirically evaluate these algorithms. In order to obtain experimental re-

sults it is necessary to have traces of users’ movements for a long period, in

the order of several days, or weeks. We are tackling the problem of obtaining

this kind of trace with two different solutions. First, we are recording the

movements of real users using GPS receivers. This solution has the advan-

tage of providing real data and not just simulated data. However, we will

88

obtain a limited number of traces (in the order of few tens). A different

solution consists in generating synthetic data through a simulator. We are

currently using a simulator called SIAFU [36], that makes it possible to gen-

erate users’ movements considering users’ activities, like working, staying at

home or similar. Our short terms objective is to simulate the movements of

the inhabitants of a small town (about 500 users) for a time period of one

week. Our long term objective is to simulate the movements of thousands

of users in a medium sized city were about one million people live. When

the input data will be available, we will be able to evaluate the efficiency, in

terms of size of the generalized area and computation time, of the algorithm

proposed in this dissertation for this context.

In future, we are also planning to investigate how to protect users against

the general privacy threat depicted in Figure 2.1. Preliminary results pre-

sented in [43] suggest that the framework proposed in this dissertation re-

quires an extension in order to model the multiple-issuer cases in which, as

we pointed out in Section 2.1.1, homogeneity attacks can be performed.

Another open problem, discussed in Section 5.2, is how different shapes

of the generalized area can be used. To address this problem, it could be

necessary to reconsider the metric used to evaluate the quality of the gen-

eralization. In this dissertation, we used the size of the generalized area as

the only metric but, in general, different definitions can be provided. For

example, if a specific service is considered (e.g., to find the closest points

of interests) then a specific measure of the quality of service can be pro-

vided (e.g., the average number of points of interest returned by the service

provider).

Finally, we believe that most of the results presented in this dissertation

can be extended to the more general case of privacy in context based services,

in which the reply to a user’s request is computed considering different

context information about that user. Clearly, the location of the user is a

relevant context information that could require generalization.

89

90

Appendix A

Proofs

A.1 Proof of Theorem 1

Proof. By Definition 5, a generalization function g() is a defense function

against UAttCst with threshold 1/k if for each original request r, g(r) is safe

against UAttCst with threshold 1/k. By Definition 4, g(r) is safe against

UAttCst with threshold 1/k if UAttCst(g(r), issuer(r)) ≤ 1/k. Therefore, we

only need to show that, for each original request r, UAttCst(g(r), issuer(r)) ≤
1/k.

Since UAttCst is a uniform attack, by Proposition 1 it follows that, for

each original request r, UAttCst(g(r), issuer(r)) = (1/|ASCst(g(r))|). By

hypothesis, g() is such that, for each original request r, g(r) is k-anonymous

in context Cst. By Definition 9 this implies that |ASCst(g(r))| ≥ k, and

therefore UAttCst(g(r), issuer(r)) ≤ 1/k. ¤

A.2 Proof of Theorem 2

Proof. To prove the theorem, we only need to show that, for each gener-

alized request r′, if i ∈ ASCst+g(r
′) then i ∈ ASCst(r′). By definition of

anonymity set and by Definition 10, for each generalized request r′, given

r = o(r′, i, loci(r′.Tdata)), if i ∈ ASCst+g(r
′) then P [g(r) = r′] > 0. By

Definition 1, if P [g(r) = r′] > 0, then r.Sdata ∈ r′.Sdata. By definition

91

of the o() function, issuer(r) = i and, from Property 1, it follows that

loci(r.Tdata) = r.Sdata. Consequently, loci(r.Tdata) ∈ r′.Sdata and hence,

by Definition 8, i ∈ ASCst(r′). ¤

A.3 Proof of Theorem 3

In order to prove Theorem 3, we first formulate and prove Lemma 1.

Lemma 1 If the generalization algorithm used by the LTS computes a de-

terministic generalization function g, the attack AttCst+g is uniform and, for

each r′ ∈ R′ it is characterized by

ASCst+g(r
′) = {i ∈ I|g(o(r′, i, loci(r′.Tdata)) = r′}

Proof of Lemma 1.

Proof. By Definition 10, the attack based on context Cst+g is given by

AttCst+g(r
′, i) =

P [g(o(r′, i, loci(r′.Tdata)) = r′]∑
j∈I P [g(o(r′, j, locj(r′.Tdata)) = r′]

If the generalization algorithm used by the LTS computes a deterministic

generalization function g, then, for each r′ ∈ R′ and i ∈ I,

P [g(o(r′, i, loci(r′.Tdata)) = r′] ∈ {0, 1}

Indeed, AttCst+g(r
′, i) equals 0 if g(o(r′, i, loci(r′.Tdata)) 6= r′; Otherwise, it

equals 1/|AS| where AS is the set of users j such that g(o(r′, j, locj(r′.Tdata)) =

r′. Therefore, according to Definition 3, AttCst+g is a uniform attack. More-

over, for each r′ ∈ R′, AttCst+g is characterized by the anonymity set

ASCst+g(r
′) = {i ∈ I|g(o(r′, i, loci(r′.Tdata)) = r′}

¤

Proof of Theorem 3.

Proof. By Definition 6, Genst+g is a defense algorithm if the execution

of Genst+g with h as re-identification threshold computes a defense func-

tion against AttCst+g with re-identification threshold h. By Definition 5,

92

Genst+g computes a defense function against AttCst+g with re-identification

threshold h if, for each original request r ∈ R, r′ = Genst+g(r, h) is a safe

request against AttCst+g with re-identification threshold h. By Definition 4,

r′ is a safe request against AttCst+g with re-identification threshold h if

AttCst+g(r
′, issuer(r′)) ≤ h. Since Algorithm 1 computes a deterministic

generalization function, by Lemma 1, AttCst+g(r
′, issuer(r′)) ≤ h if

|ASCst+g(r
′)| = |{i ∈ I|g(o(r′, i, loci(r′.Tdata)) = r′}| ≥ 1/h

We prove that this inequality holds by proving that, in each execution

of Algorithm 1, the last value A assigned to variable AS is such that (1) the

set A has cardinality at least 1/h and (2) for each user i in A, there exists

a potential request r̄ in R issued by i such that Genst+g(r̄, h) = r′. The

thesis follows from the fact that the request returned by Algorithm 1 has

MBR(A) as generalized area.

(1) Since at Line 1 of Algorithm 1 the variable AS is set to I that has

cardinality at least 1/h and AS is reassigned to a block only if each block

has cardinality at least 1/h, varibale AS is never assigned to a set with

cardinality smaller than 1/h.

(2) Let i be a user in A, and r̄ = o(r′, i, loci(r′.Tdata) be a poten-

tial original request issued by i. Moreover, let AS(j) and AS(j) denote

the values of the variables AS in the j-th iteration of Genst+g(r, h) and

Genst+g(r̄, h), respectively. We show by induction on the number of itera-

tions that AS(j) = AS(j) for each iteration j.

Induction basis: In the first iteration, AS(1) = AS(1) = I.

Induction: Assume at iteration j, AS(j) = AS(j). We need to show

that either both executions terminate at that iteration, or AS(j + 1) =

AS(j + 1). Indeed, since AS(j) = AS(j), the partition procedure is deter-

ministic and has the value of the variable AS as the only input, it follows that

the same partition {AS1, . . . , ASn} is computed for AS(j) and for AS(j).

Consequently, if there exists a block with cardinality less than 1/h, both

executions terminate, returning the same value for AS. On the contrary, if

all the blocks have cardinality larger than or equal to 1/h, then AS(j + 1)

93

is the block in {AS1 . . . , ASn} that contains issuer(r) and AS(j + 1) is the

block in the same set that contains i. We claim that AS(j +1) must contain

i. Indeed, we know that the resulting AS of the algorithm must be a subset

of AS(j + 1) due to successive partitioning method of the algorithm and we

assumed that i is in the resulting AS. Now, since AS(j + 1) also contains

i, we know AS(j + 1) = AS(j + 1) due to the fact that {AS1 . . . , ASn} is a

partition of AS(j) = AS(j). ¤

A.4 Proof of Theorem 4

Proof. Analogously to the proof of Theorem 3, we need to prove that

|ASCst+g(r
′)| = |{i ∈ I|g(o(r′, i, loci(r′.Tdata)) = r′}| ≥ 1/h

where the generalization algorithm used by the LTS to compute g is

dichotomicPoints(). To prove that this inequality holds, we only need to

show that (1) the last set A assigned to variable AS in Algorithm 2 has

cardinality at least 1/h and (2) for each user i in A, there exists a request r̄

in R issued by i such that dichotomicPoints(r̄, h) = r′.

(1) At each iteration of the main loop, if |AS| ≥ 2/h, AS is partitioned in

two blocks, otherwise the algorithm terminates. The two blocks in which AS

is partitioned have cardinality b|AS|/2c and d|AS|/2e, respectively. Since

AS is partitioned only if |AS| ≥ 2/h, the two blocks have at least cardinality

1/h. Therefore, the final AS set has at least cardinality 1/h.

(2) Since AS is the only parameter used in the computation of the par-

tition, the proof is analogous to point (2) in the proof of Theorem 3. ¤

A.5 Proof of Theorem 5

Proof. Analogously to the proof of Theorem 3, we need to prove that

|ASCst+g(r
′)| = |{i ∈ I|g(o(r′, i, loci(r′.Tdata)) = r′}| ≥ 1/h

94

where the generalization algorithm used by the LTS to compute g is grid().

To prove that this inequality holds, we only need to show that (1) the last

set A assigned to variable AS in Algorithm 3 has cardinality at least 1/h

and (2) for each user i in A, there exists a request r̄ in R issued by i such

that grid(r̄, h) = r′.

(1) In each of the two iterations of the Algorithm 3, variable AS is

reassigned to a set with cardinality at least equal to the current value of the

variable upb. Indeed, the cardinality of AS is given by end−start+1; When

the condition of the if statement of line 13 is verified, then end−start+1 =

upb. Otherwise,

end− start + 1 = |AS| − 1− (nob− 1)upb + 1 =

= |AS| − nob · upb + upb ≥ |AS| − |AS|+ upb = upb

During the first iteration upb = b|I|/nobc where nob =
⌊√

|I| · h
⌋

(note

that the value of nob is fixed before the main cycle and is never changed).

During the second iteration, upb is set to b|AS|/nobc. Since |AS| is at least

the value that upb has during the first iteration, then upb ≥
⌊ b|I|/nobc

nob

⌋
and

hence, since k ≥ 1/h, we need to prove that
⌊ b|I|/nobc

nob

⌋
≥ k This inequality

is equivalent to b|I|/nobc
nob ≥ k and hence to b|I|/nobc ≥ k · nob.

This inequality follows from the fact that, by definition, nob =
⌊√

|I|/k
⌋
,

hence nob ≤
√
|I|/k and therefore, since nob > 0, k·nob2 ≤ |I|. Consquently,

|I|/nob ≥ k · nob and finally b|I|/nobc ≥ bk · nobc = k · nob.

(2) Since AS is the only parameter used in the computation of the par-

tition, the proof is analogous to point (2) in the proof of Theorem 3. ¤

A.6 Proof of Theorem 6

Proof. By Definition 6, Greedy-nnASR is a defense algorithm if the execu-

tion of Greedy-nnASR with h as re-identification threshold computes a de-

fense function against AttCst+pid with re-identification threshold h. By Def-

inition 5, Greedy-nnASR computes a defense function against UAttCst+pid

95

with re-identification threshold h if, for each original request r ∈ R, r′ =

Greedy-nnASR(r, h, τ, Smax) is a safe request against UAttCst+pid
with re-

identification threshold h. By Definition 4, r′ is a safe request against

UAttCst+g with re-identification threshold h if UAttCst+pid
(r′, issuer(r′)) ≤

h. Since UAttCst is a uniform attack, by Proposition 1 it follows that,

UAttCst+pid
(r′, issuer(r)) = (1/|ASCst+pid

(r′)|). Therefore we need to prove

that |ASCst+pid
(r′)| ≥ 1/h. where, by Definition 17,

ASCst+pid
(r′) =

⋂

r′′∈LCpid
(r′)

ASCst(r
′′)

If τ = ∅, then ASCst+pid
(r′) = ASCst(r′) and the thesis follows the fact

that nnASR is a defense algorithm against UAttCst . The same holds if

unlinking is performed (Line 12 and 13).

In the other cases, a request r′ is returned that has, as generalized

area, the MBR of the current locations of the users in the anonymity set of

r′′′. Therefore, ASCst(r′) ⊇ ASCst(r′′′). Analogously, for each request r̄ ∈
LCpid

(r′), ASCst(r̄) ⊇ ASCst(r′′′). Consequently,
⋂

r′′∈LCpid
(r′) ASCst(r′) =

ASCst(r′′′). The thesis follows from the fact that r′′′ is a safe request against

UAttCst+pid
with re-identification threshold h. ¤

A.7 Proof of Theorem 7

Proof. We prove that, for each original request r ∈ R, h ∈ (0, 1], trace τ and

value Smax, the execution of Square(r, h, τ, Smax) returns a request r′ that is

either rnull or a safe request against UAttCst+pid
with re-identification thresh-

old h. Since UAttCst+pid
is a uniform attack, UAttCst+pid

= (1/|ASCst+pid
(r′)|)

where, by Definition 17, ASCst+pid
(r′) =

⋂
r′′∈LCpid

(r′) ASCst(r′′). Therefore

we prove that
⋂

r′′∈LCpid
(r′) ASCst(r′′) ≥ 1/h.

If τ = ∅, then variable AS is reassigned, at Line 12, to the set of users

of I whose location is inside the square s defined al Line 11. If |AS| < 1/h

then the if conditions of Lines 13 and 17 are not verified and rnull is re-

turned. Otherwise, if |AS| ≥ 1/h, the request r′ having MBR(AS, r.Tdata)

96

as generalized area is returned. By Definition 8, AS = ASCst(r′). Since

τ = ∅, LCpid
(r′) = {r′} and hence

⋂
r′′∈LCpid

(r′) ASCst(r′′) = ASCst(r′) that

has cardinality at least 1/h. Hence r′ is a safe request against UAttCst+pid

with re-identification threshold h.

If τ 6= ∅, then let r′′ be the last request in temporal order in τ . In

this case, at Line 12 the variable AS is reassigned to the set of users in

ASCst+pid
(r′′) whose location is inside s. Therefore, AS ⊆ ASCst+pid

(r′′).

If |AS| ≥ 1/h, the request r′ having MBR(AS, r.Tdata) as generalized

area is returned. By Definition 8, AS = ASCst(r
′). By Definition 17,

ASCst+pid
(r′) =

⋂
r′′′∈LCpid

(r′) ASCst(r′′′). Since r′′ is the last request in

temporal order in τ , LCpid
(r′) = LCpid

(r′′) ∪ {r′}. Therefore,

ASCst+pid
(r′) =

⋂

r′′′∈LCpid
(r′′)

ASCst(r
′′′) ∩ASCst(r

′)

By Definition 17,

⋂

r′′′∈LCpid
(r′′)

ASCst(r
′′′) = ASCst+pid

(r′′)

Therefore,

ASCst+pid
(r′) = ASCst+pid

(r′′) ∩ASCst(r
′)

Since ASCst(r′) ⊆ ASCst+pid
(r′′), then ASCst+pid

(r′) = ASCst(r′) that, by

hypotesis, has cardinality at least 1/h. Hence r′ is a safe request against

UAttCst+pid
with re-identification threshold h.

If |AS| < 1/h then AS is reassigned to the set of users of I whose location

is inside s. The proof of the theorem in this case is analogous to the proof

in the case in which τ = ∅. ¤

A.8 Proof of Theorem 8

The proof of Theorem 8 is analogous to the proof of Lemma 1.

97

A.9 Proof of Theorem 9

Proof. Since ProvidentHilb is a deterministic algorithm, by Theorem8 it

follows that AttCst+g+pid
is a uniform attack and, for each generalized request

r′ computed by ProvidentHilb, the attack is characterised by the anonymity

set

ASCst+g+pid
(r′) = {i ∈ I|∀r′′ ∈ LCpid

(r′) g(r′′i , τ r′
r′′) = r′′}

where, for each i ∈ I and each r′′ ∈ R′, r′′i = o(r′′, i, loci(r′′.Tdata)) and τ r′
r′′

is the set of requests of LCpid
(r′) issued before r′′.

We prove that, for each original request r ∈ R, h ∈ (0, 1], trace τ and

value Smax, the execution of ProvidentHilb(r, h, τ, Smax) returns a request

r′ that is safe request against UAttCst+g+pid
with re-identification threshold

h.

If τ = ∅, ProvidentHilb returns the request r′ having MBR(B, r.Tdata)

as generalized area, where B is the block of the parition computed with

HilbPart that contains the issuer. Since τ = ∅, LCpid
(r′) = {r′} and hence

{i ∈ I|∀r′′ ∈ LCpid
(r′) g(r′′i , τ r′

r′′) = r′′} = {i ∈ I|g(r′i, ∅) = r′}

Since, the HilbPart function is computed independently from the issuer,

for each user j in B, g(r′j , ∅) = r′. Since each block B returned by the

HilbPart has at least cardinality 1/h, ASCst+g+pid
(r′) ≥ 1/h and hence r′ is

a safe request against UAttCst+pid
with re-identification threshold h.

If τ 6= ∅, then ProvidentHilb computes the partition part among ASCst+g+pid
(r′′)

i.e., the set of users in the anonymity set of the last request r′′ of τ . Then,

the algorithm returns the request r′ that has MBR(B, r.Tdata) as general-

ized area, where B is the block computed with HilbPart that contains the

issuer. By Theorem 8,

ASCst+g+pid
(r′) = {i ∈ I|∀r′′′ ∈ LCpid

(r′) g(r′′′i , τ r′
r′′′) = r′′}

Since r′′ is the last request in temporal order in τ ,

ASCst+g+pid
(r′) = {i ∈ I|∀r′′′ ∈ LCpid

(r′′) g(r′′′i , τ r′
r′′′) = r′′′ and g(r′i, τ

r′
r′) = r′}

98

The last equation can be rewritten as

ASCst+g+pid
(r′) = {i ∈ I|∀r′′′ ∈ LCpid

(r′′) g(r′′′i , τ r′
r′′′) = r′′′}∩{i ∈ I|g(r′i, τ

r′
r′) = r′}

By Theorem 8,

{i ∈ I|∀r′′′ ∈ LCpid
(r′′) g(r′′′i , τ r′

r′′′) = r′′′} = ASCst+g+pid
(r′′)

therefore

ASCst+g+pid
(r′) = ASCst+g+pid

(r′′) ∩ {i ∈ I|g(r′i, τ
r′
r′) = r′}

Since the block B is computed among the users in ASCst+g+pid
(r′′) and has

at least cardinality 1/h, then ASCst+g+pid
(r′) ≥ 1/h and hence r′ is a safe

request against UAttCst+pid
with re-identification threshold h.

¤

99

100

Appendix B

Notation

A summary of the notation used in this dissertation follows:

• R the set of all possible original requests.

• R′ the set of all possible generalized requests.

• r an original request (if not differently stated).

• r′ a generalized request (if not differently stated).

• r.IDdata the identity of the issuer of r.

• r′.IDdata a pseudo-id or null.

• r.STdata the exact spatio-temporal information of r.

• r′.STdata the possibly generalized spatio-temporal information of r′.

• r.Sdata the exact location from where r is issued.

• r′.Sdata the generalized area from where r′ is issued.

• r.Tdata (r′.Tdata) the exact time from where r (r′, respectively) is

issued.

• r.SSdata (r′.SSdata) the service specific information of r (r′, respec-

tively).

101

• o(r′, i, s) the potential original request r equal to r′ except from the

fact that it is issued by i from the location s.

• I the set of users.

• i a user in I (if not differently stated).

• issuer(r) (issuer(r′)) the issuer of r (r′, respectively).

• Atot the total area where the LTS provides privacy protection.

• loci(t) the location of i at time t.

• g a deterministic or randomized generalization function.

• AttC(r′, i) an attack based on context C.

• ASC(r′) the anonymity set of r′ in context C, i.e., the set of users that

have non zero probability, considering AttC , of being the issuer of r′.

• UAttC(r′, i) the uniform attack based on context C.

• h the re-identification threshold.

102

Bibliography

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,

D. Thomas, and A. Zhu. Achieving anonymity via clustering. In Proc.

of the 25th ACM symposium on Principles of database systems, pages

153–162. ACM Press, 2006.

[2] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-

anonymization. In Proc. of the 21st International Conference on Data

Engineering, pages 217–228. IEEE Computer Society, 2005.

[3] A. R. Beresford. Location privacy in ubiquitous computing. PhD thesis,

University of Cambridge, 2005.

[4] A. R. Beresford and F. Stajano. Location privacy in pervasive comput-

ing. IEEE Pervasive Computing, 2(1):46–55, January–March 2003.

[5] A. R. Beresford and F. Stajano. Mix zones: User privacy in location-

aware services. In Proc. of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops, page 127. IEEE

Computer Society, 2004.

[6] C. Bettini, S. Mascetti, and X. S. Wang. Privacy protection through

anonymity in location-based services. Handbook of Database Security:

Applications and Trends, Springer, To appear.

[7] C. Bettini, S. Mascetti, and X. S. Wang. Privacy threats in location-

based services. In S. Shekhar and H. Xiong, editors, Encyclopedia of

GIS. Springer, To appear.

103

[8] C. Bettini, S. Mascetti, X. S. Wang, and S. Jajodia. Anonymity in

location-based services: towards a general framework. In Proc. of the

8th International Conference on Mobile Data Management. IEEE Com-

puter Society, 2007.

[9] C. Bettini, S. Mascetti, X. S. Wang, and S. Jajodia. Supporting tem-

poral reasoning by mapping calendar expressions to minimal periodic

sets. Journal of Artificial Intelligence Research, 28:299–348, 03 2007.

[10] C. Bettini and R. D. Sibi. Symbolic representation of user-defined time

granularities. Annals of Mathematics and Artificial Intelligence, 30(1-

4):53–92, 2000.

[11] C. Bettini, X. S. Wang, and S. Jajodia. Time Granularities in

Databases, Data Mining, and Temporal Reasoning. Springer, 2000.

[12] C. Bettini, X. S. Wang, and S. Jajodia. Solving multi-granularity tem-

poral constraint networks. Artif. Intell., 140(1/2):107–152, 2002.

[13] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy against

location-based personal identification. In Proc. of the 2nd workshop

on Secure Data Management, volume 3674 of LNCS, pages 185–199.

Springer, 2005.

[14] C. Bettini, X. S. Wang, and S. Jajodia. The role of quasi-identifiers in

k-anonymity revisited. Technical Report RT-11-06, DICo, University

of Milan, 2006.

[15] D. Bresolin, A. Montanari, and G. Puppis. Time granularities and

ultimately periodic automata. In Proc. of the 9th European Conference

on Logics in Artificial Intelligence volume 3229 of LNCS, pages 513–

525. Springer, 2004.

[16] T. Brinkhoff. A framework for generating network-based moving ob-

jects. GeoInformatica, 6(2):153–180, 2002.

104

[17] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure anonymization

for incremental datasets. In Proc. of Third VLDB Workshop on Secure

Data Management, Lecture Notes in Computer Science. Springer, 2006.

[18] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[19] C. Combi, M. Franceschet, and A. Peron. Representing and reason-

ing about temporal granularities. Journal of Logic and Computation,

14(1):51–77, 2004.

[20] J. Cuellar, J. Morris, D. Mulligan, J. Peterson, and J. Polk. Geo-

priv requirements, 2006. http://www.ietf.org/html.charters/geopriv-

charter.html.

[21] T. Dalenius. Finding a needle in a haystack - or identifying anonymous

census record. Journal of Official Statistics, 2(3):329–336, 1986.

[22] B. Gedik and L. Liu. Location privacy in mobile systems: A person-

alized anonymization model. In Proc. of the 25th International Con-

ference on Distributed Computing Systems, pages 620–629. IEEE Com-

puter Society, 2005.

[23] G. Ghinita, P. Kalnis, and S. Skiadopoulos. Prive: anonymous location-

based queries in distributed mobile systems. In Proc. of the 16th inter-

national conference on World Wide Web, pages 371–380. ACM Press,

2007.

[24] M. Gruteser and D. Grunwald. Anonymous usage of location-based

services through spatial and temporal cloaking. In Proc. of the 1st

International Conference on Mobile Systems, Applications and Services

(MobiSys). The USENIX Association, 2003.

[25] M. Gruteser and B. Hoh. On the anonymity of periodic location sam-

ples. In Security in Pervasive Computing, volume 3450 of LNCS, pages

179–192, 2005.

105

[26] M. Gruteser and X. Liu. Protecting privacy in continuous location-

tracking applications. IEEE Security & Privacy, 2(2):28–34, 2004.

[27] B. Hoh and M. Gruteser. Protecting location privacy through path

confusion. In Proc. of the First International Conference on Security

and Privacy for Emerging Areas in Communications Networks (Se-

cureComm), pages 194–205. IEEE Computer Society, 2005.

[28] H. Hu and D. L. Lee. Range nearest-neighbor query. IEEE Transactions

on Knowledge and Data Engineering, 18(1):78–91, 2006.

[29] P. Kalnis, G. Ghinta, K. Mouratidis, and D. Papadias. Preserving

anonymity in location based services. Technical Report B6/06, National

University of Singapore, 2006.

[30] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communica-

tion technique using dummies for location-based services. In Proc. of

the International Conference on Pervasive Services, pages 88–97. IEEE

Computer Society, 2005.

[31] A. Kobsa. Privacy-enhanced personalization. Communications of the

ACM, 50(8):24–33, 2007.

[32] B. Leban, D. McDonald, and D. Forster. A representation for collec-

tions of temporal intervals. In Proc. of the 5th National Conference on

Artificial Intelligence, pages 367–371. Morgan Kaufmann, 1986.

[33] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidi-

mensional k-anonymity. In Proc of the 22nd International Conference

on Data Engineering, 2006.

[34] A. Machanavajjhala and J. Gehrke. On the efficiency of checking perfect

privacy. In Proc. of the 25th ACM symposium on Principles of database

systems, pages 163–172. ACM Press, 2006.

106

[35] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam.

l-diversity: Privacy beyond k-anonymity. Proc. of the 22nd Interna-

tional Conference on Data Engineering, 0:24, 2006.

[36] M. Martin and P. Nurmi. A generic large scale simulator for ubiquitous

computing. In Proc. of the 3rd Conference on Mobile and Ubiquitous

Systems: Networks and Services. IEEE Computer Society, 2006.

[37] S. Mascetti and C. Bettini. A comparison of spatial generalization

algorithms for lbs privacy preservation. In Proc. of the 1st Inter-

national Workshop on Privacy-Aware Location-based Mobile Services.

IEEE Computer Society, 2007.

[38] S. Mascetti, C. Bettini, X. S. Wang, and S. Jajodia. k-anonymity in

databases with timestamped data. In Proc. of 13th International Sym-

posium on Temporal Representation and Reasoning. IEEE Computer

Society, 2006.

[39] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query

processing for location services without compromising privacy. In Proc.

of the 32nd International Conference on Very Large Data Bases, pages

763–774. VLDB Endowment, 2006.

[40] A. Montanari. Metric and Layered Temporal Logic for Time Gran-

ularity. PhD thesis, ILLC Dissertation Series 1996-02, University of

Amsterdam, 1996.

[41] M. Niezette and J. M. Stevenne. An efficient symbolic representation

of periodic time. In Proc. of the first International Conference on In-

formation and Knowledge Management volume 725 of Lecture Notes in

Computer Science, pages 161–168. Springer, 1992.

[42] P. Ning, X. S. Wang, and S. Jajodia. An algebraic representation of

calendars. Annals of Mathematics and Artificial Intelligence, 36(1-2):5–

38, 2002.

107

[43] L. Pareschi and C. Bettini. Beyond anonymity in location based ser-

vices. In Proc. of the 15th Italian Symposium on Advanced Database

Systems, pages 447–454, 2007.

[44] P. Samarati. Protecting respondents’ identities in microdata release.

IEEE Transactions on Knowledge and Data Engineering, 13(6):1010–

1027, 2001.

[45] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-

tion and suppression. International Journal on Uncertainty, Fuzziness

and Knowledge-based Systems, 10(5):571–588, 2002.

[46] L. Sweeney. k-anonymity: a model for protecting privacy. Interna-

tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,

10(5):557–570, 2002.

[47] P. Terenziani. Symbolic user-defined periodicity in temporal relational

databases. IEEE Transactions of Knowledge and Data Engineering,

15(2):489–509, 2003.

[48] B. Urgun, C. E. Dyreson, R. T. Snodgrass, J. K. Miller, M. D. Soo,

N. Kline, and C. S. Jensen. Integrating multiple calendars using TauZa-

man. Software-Practice Experience, to appear, 2007.

[49] J. Wijsen. A string-based model for infinite granularities. In Spatial and

Temporal Granularity: Papers from the AAAI Workshop. Technical

Report WS-00-08, pages 9–16. AAAI Press, 2000.

[50] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. k-anonymity:

an enhanced k-anonymity model for privacy preserving data publish-

ing. In Proc. of the the 12th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 754–759. ACM Press,

2006.

108

[51] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD

’06: Proceedings of the 2006 ACM SIGMOD international conference

on Management of data, pages 229–240. ACM Press, 2006.

[52] X. Xiao and Y. Tao. M-invariance: towards privacy preserving re-

publication of dynamic datasets. In Proc. of the 2007 ACM SIGMOD

international conference on Management of data, pages 689–700. ACM

Press, 2007.

[53] M. Youssef, V. Atluri, and N. R. Adam. Preserving mobile customer

privacy: an access control system for moving objects and customer

profiles. In Proc. of the 6th international conference on Mobile data

management, pages 67–76. ACM Press, 2005.

109

